Effects of Cyclopentadienyl and Phosphine Ligands on the Basicities and Nucleophilicities of Cp′**Ir(CO)(PR3) Complexes†**

Dongmei Wang and Robert J. Angelici*

Department of Chemistry, Iowa State University, Ames, Iowa 50011

*Recei*V*ed August 18, 1995*^X

Basicities of the series of complexes CpIr(CO)(PR₃) [PR₃ = P(p -C₆H₄CF₃)₃, P(p -C₆H₄F)₃, P(p -C₆H₄Cl)₃, PPh₃, P(p-C₆H₄CH₃)₃, P(p-C₆H₄OCH₃)₃, PPh₂Me, PPhMe₂, PMe₃, PEt₃, PCy₃] have been measured by the heat evolved (ΔH_{HM}) when the complex is protonated by CF₃SO₃H in 1,2-dichloroethane (DCE) at 25.0 °C. The $-\Delta H_{HM}$ values range from 28.0 kcal/mol for CpIr(CO)[$P(p-C_6H_4CF_3)$] to 33.2 kcal/mol for CpIr(CO)(PMe_3) and are directly related to the basicities of the PR_3 ligands in the complexes. For the more basic pentamethylcyclopentadienyl analogs, the $-\Delta H_{HM}$ values range from 33.8 kcal/mol for the weakest base Cp*Ir(CO)[P(*p*-C₆H₄CF₃)₃] to 38.0 kcal/mol for the strongest $Cp*Ir(CO)(PMe₃)$. The nucleophilicities of the $Cp'Ir(CO)(PR₃)$ complexes were established from second-order rate constants (*k*) for their reactions with CH₃I to give [Cp'Ir(CO)(PR₃)(CH₃)]⁺I⁻ in CD₂Cl₂ at 25.0 °C. There is an excellent linear correlation between the basicities (ΔH_{HM}) and nucleophilicities $(\log k)$ of the CpIr(CO)(PR₃) complexes. Only the complex CpIr(CO)(PCy₃) with the bulky tricyclohexylphosphine ligand deviates dramatically from the trend. In general, the pentamethylcyclopentadienyl complexes react 40 times faster than the cyclopentadienyl analogs. However, they do not react as fast as predicted from electronic properties of the complexes, which suggests that the steric size of the Cp* ligand reduces the nucleophilicities of the Cp*Ir(CO)(PR3) complexes. In addition, heats of protonation (∆*H*HP) of tris(2-methoxyphenyl)phosphine, tris(2,6-dimethoxyphenyl)phosphine, and tris(2,4,6-trimethylphenyl)phosphine were measured and used to estimate p*K*^a values for these highly basic phosphines.

Introduction

Basicities of transition-metal complexes¹⁻³ are of much interest because they are assumed to be indicators of other types of reactivity that depend upon electron richness at the metal center. As pK_a values of organic acids and bases are useful predictors of their reactivities, so too might one expect the basicities of metal complexes to be a guide to predicting their nucleophilicities⁴ and tendencies to undergo oxidative addition as well as simple oxidation and reduction reactions. However, few quantitative data^{1f} are available that correlate metal complex basicities with other reactivities of metal complexes.

- (1) (a) Pearson, R. *Chem. Rev.* **1985**, 85, 41. (b) Martinho Simões, J. A.; Beauchamp, J. L. *Chem. Rev.* **1990**, *90*, 629. (c) Kristjánsdóttir, S. S.; Norton, J. R. in *Transition Metal Hydrides: Recent Advances in Theory and Experiments*; Dedieu, A., Ed.; VCH: New York, 1991; Chapter 10. (d) Bullock, R. M. *Comments Inorg. Chem.* **1991**, *12*, 1. (e) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, 1987. (f) Kramarz, K. W.; Norton, J. R. *Prog. Inorg. Chem.* **1994**, *42*, 1.
- (2) (a) Weberg, R. T.; Norton, J. R. *J. Am. Chem. Soc.* **1990**, *112*, 1105. (b) Chinn, M. S.; Heinekey, D. M. *J. Am. Chem. Soc.* **1990**, *112*, 5166. (c) Diogo, H. P.; Alencar Simoni, J.; Minas da Piedade, M. E.; Dias, A. R.; Martinho Simo˜es, J. A. *J. Am. Chem. Soc.* **1993**, *115*, 2764. (d) Parker, V. D.; Handoo, K. L.; Roness, F.; Tilset, M. *J. Am. Chem. Soc.* **1991**, *113*, 7493. (e) Tilset, M. *J. Am. Chem. Soc.* **1992**, *114*, 2740. (f) Smith, K.-T.; Rømming, C.; Tilset, M. *J. Am. Chem. Soc.* **1993**, *115*, 8681. (g) Skagestal, V.; Tilset, M. *J. Am. Chem. Soc.* **1993**, *115*, 5077. (h) Cappellani, E. P.; Drouin, S. D.; Jia, G.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T. *J. Am. Chem. Soc.* **1994**, *116*, 3375.
- (3) Angelici, R. J. *Acc. Chem. Res.* **1995**, *28*, 51.
- (4) (a) Henderson, S.; Henderson, R. A. *Ad*V*. Phys. Org. Chem.* **1987**, *23*, 1. (b) Lai, C.-K.; Feighery, W. G.; Zhen, Y.; Atwood, J. D. *Inorg. Chem.* **1989**, *28*, 3929. (c) Lai, C.-K.; Feighery, W. G.; Zhen, Y.; Atwood, J. D. *Inorg. Chem.* **1990**, *29*, 1594.

In this paper, we report values for the basicities and nucleophilicities of a series of $CpTr(CO)(PR₃)$ complexes, where $Cp' = \eta^5$ -C₅H₅ or η^5 -C₅Me₅, and seek correlations between these parameters. The basicities are defined as the enthalpies of protonation (ΔH_{HM}) of the metal complexes with triflic acid (CF_3SO_3H) in 1,2-dichloroethane (DCE) solution at 25.0 °C (eq. 1); these values are determined by (eq 1) calorimetry. The

For $Cp' = \eta^5 - C_5H_5$: $PR_3 = P(p - C_6H_4CF_3)$ (1), $P(p - C_6H_4Cl)_3$ (2), $P(p - C_6H_4F)_3$ (3), $PPh_3(4)$, $P(p-C_6H_4Me)_3(5)$, $P(p-C_6H_4OMe)_3(6)$, $PPh_2Me(7)$, $PPhMe_2(8)$, $PMe_3(9)$, $PEt₃$ (10), $PCy₃$ (11)

For $Cp' = \eta^5 - C_5Me_5$. $PR_3 = P(p-C_6H_4CF_3)$ (12), $P(p-C_6H_4Cl)_3$ (13), PPh_3 (14), $PPh₂Me$ (15), $PMe₃$ (16)

nucleophilicities are defined by rate constants (*k*) for their reactions with CH₃I to form $[Cp'(CO)(PR₃)Ir(CH₃)]⁺I⁻$ in CD₂- $Cl₂$ at 25.0 °C (eq 2). These studies provide a quantitative basis

for understanding how systematic changes in metal basicity affect rate constants for reactions in which the metal in the complex acts as the nucleophile. Moreover, the results allow a

0020-1669/96/1335-1321\$12.00/0 © 1996 American Chemical Society

[†] Presented in part at the 206th National Meeting of the American Chemical Society, Chicago, IL, Aug 22-27, 1993; see Abstracts, No. INOR

^{370.}^X Abstract published in *Ad*V*ance ACS Abstracts,* January 1, 1996.

comparison of the electronic and steric effects of the η^5 -C₅H₅ and η^5 -C₅Me₅ ligands, which were so widely discussed recently.⁵

In this paper, we also examine the basicities (ΔH_{HP}) of tris(2methoxyphenyl)phosphine [P(2-C₆H₄OMe)₃] (17), tris(2,6dimethoxyphenyl)phosphine {P[2,6-C6H3(OMe)2]3} (**18**), tris- (2,4,6-trimethoxyphenyl)phosphine {P[2,4,6-C6H2(OMe)3]3} (**19**), and tris(2,4,6-trimethylphenyl)phosphine $[P(2,4,6-C_6H_2Me_3)_3]$ (**20**) by measuring their heats of protonation (ΔH_{HP}) in DCE solvent (eq 3). The methoxy and methyl groups make these the most basic triarylphosphines known.³
PR₃ + CF₃SO₃H $\frac{DCE}{25\degree C}$ HPR₃⁺CF₃

$$
PR_3 + CF_3SO_3H \xrightarrow{DCE} HPR_3^+CF_3SO_3^-; \quad \Delta H_{HP} \tag{3}
$$

Experimental Section

General Procedures. All preparative reactions, chromatography, and manipulations were carried out under an atmosphere of nitrogen or argon with use of vacuum line, Schlenk, syringe, or drybox techniques similar to those described in the literature.⁶ The solvents were purified under nitrogen as described below using standard methods.7 Toluene, decane, hexanes, and methylene chloride were refluxed over CaH₂ and then distilled. Tetrahydrofuran (THF) and diethyl ether were distilled from sodium benzophenone. 1,2-Dichloroethane (DCE) was purified by washing with concentrated sulfuric acid, distilled deionized water, 5% NaOH, and water again; the solvent was then predried over anhydrous MgSO4, stored in amber bottles over molecular sieves (4 Å), and then distilled from P_4O_{10} under argon immediately before use. Triflic acid $(CF₃SO₃H)$ was purchased from 3M Co. and purified by fractional distillation under argon before use. Methyl iodide was distilled over P_4O_{10} and stored away from sunlight in a brown bottle containing a small amount of powdered copper.⁷ Neutral Al_2O_3 (Brockmann, activity I) used for chromatography was deoxygenated at room temperature under vacuum (10^{-5} mmHg) for 12 h, deactivated with 5% (w/w) N_2 -saturated water, and stored under N_2 .

The phosphines $P(p-C_6H_4Cl)$ ₃, $P(p-C_6H_4F)$ ₃, $P(p-C_6H_4CF_3)$ ₃, $P(p-C_6F)$ C₆H₄Me)₃, P(p-C₆H₄OMe)₃, and PCy₃ were purchased from Strem, while PPh₃, PMePh₂, PMe₂Ph, PMe₃, PEt₃, tris(2-methoxyphenyl)phosphine, tris(2,6-dimethoxyphenyl)phosphine, tris(2,4,6-trimethoxyphenyl)phosphine, and tris(2,4,6-trimethylphenyl)phosphine were purchased from Aldrich. The ¹H NMR spectra were obtained on samples dissolved in CDCl₃ or CD₂Cl₂ on a Nicolet NT 300-MHz spectrometer using TMS (δ = 0.00 ppm) as the internal reference. The $31P{1H}$ NMR spectra of samples in CDCl₃ in 10-mm tubes were recorded on a Varian VXR 300-MHz NMR spectrometer using 85% phosphoric acid ($\delta = 0.00$ ppm) as the external reference. Solution infrared spectra were recorded on a Nicolet 710 FT-IR spectrometer using sodium chloride cells with 0.1-mm spacers. Elemental microanalyses were performed by National Chemical Consulting, Inc., Tenafly, NJ.

Syntheses of CpIr(CO)(PR3) Complexes. The starting material, $cis-Ir(CO)₂(Cl)(p-NH₂C₆H₄CH₃)$, was prepared as a purple powder from IrCl₃'*x*H₂O in 86% yield according to a known procedure.⁸ Although

- (7) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of Laboratory Chemicals*, 2nd ed.; Pergamon: New York, 1980.
- (8) Klabunde, U. *Inorg. Synth.* **1974**, *15*, 82.

complexes $7-9$ were prepared previously by other methods,⁹ complexes $1-10$ were synthesized from reactions of *cis*-Ir(CO)₂(Cl)(*p*-NH₂C₆H₄CH₃) with the appropriate phosphine (eq 4), followed by reaction with potassium cyclopentadienide (KCp) *in situ* (eq 5). The *cis*-IrCl(CO)₂(*p*-NH₂C₆H₄CH₃) + 2PR₃ $\frac{\text{toluene}}{\text{reflux}}$ reaction with potassium cyclopentadienide (KCp) *in situ* (eq 5). The

$$
cis-IrCl(CO)_2(p-NH_2C_6H_4CH_3) + 2PR_3 \frac{\text{toluene}}{\text{reflux}} \tan s-IrCl(CO)(PR_3)_2 \text{ (4)}
$$

$$
trans-IrCl(CO)(PR_3)_2 + KCP \frac{\text{toluene}}{\text{reflux}} CDIr(CO)(PR_3) \text{ (5)}
$$

trans-IrCl(CO)(PR₃)₂ + KCp^{toluene}
$$
\frac{\text{toluene}}{1-10}
$$
 (5)

purity and identity of each compound were estabished by comparison of their infrared and 1H NMR spectra with those of other CpIr(CO)- (PR₃) complexes reported in the literature.⁹

CpIr(CO)(PPh3) (4). This compound was prepared in 67% yield from the reaction of $K\text{Cp}^{10}$ with IrCl(CO)(PPh₃)₂¹¹ according to the previously reported procedure;¹² it was also prepared in 62% yield by the method given in the next paragraph. ³¹P NMR (CDCl₃): δ 16.66 ppm. ¹H NMR (CD₂Cl₂): δ 7.34-7.55 (m, 15 H, Ph), 5.11 (d, J_{PH} = 0.9 Hz, 5 H, Cp). IR (CH₂Cl₂): *v*(CO) 1923 cm⁻¹.

 $\text{CpIr(CO)}[\text{P}(p\text{-}C_6\text{H}_4\text{Cl})_3]$ (2). A solution of *cis*-Ir(CO)₂(Cl)(*p*- $NH_2C_6H_4CH_3$) (200 mg, 0.51 mmol) in toluene (25 mL) was treated with a slight excess of 2 equiv of tris(*p*-chlorophenyl)phosphine (400 mg, 1.1 mmol). The mixture was refluxed for about 1 h until the IR spectrum showed only the new band ($v(CO)$, toluene: 1965 cm⁻¹) for *trans*-IrCl(CO)[$P(p-C_6H_4Cl)_3$]₂ and no bands corresponding to the starting material (v (CO), toluene: 2074 s, 1991 s cm⁻¹). The color of the reaction solution changed from the initial dark purple to yellow. After cooling to room temperature, it was filtered through a cannula into a flask containing white crystalline KCp;10 the KCp was prepared by allowing 25 mg (0.60 mmol) of K to react with freshly cracked CpH (0.06 mL, 0.7 mmol) in THF (25 mL) under reflux for 2 h and removing the solvent under vacuum. The mixture containing *trans*-IrCl(CO)[$P(p-C_6H_4Cl)_3$]₂ and KCp in toluene was refluxed for about 3 h until the IR spectrum showed only the new band (*υ*(CO), toluene: 1938 cm⁻¹) for 2 and the complete disappearance of the 1965 cm⁻¹ band for *trans*-IrCl(CO)[P(p-C₆H₄Cl)₃]₂. After cooling to room temperature, the solution was filtered and reduced to ∼5 mL under vacuum. The residue was passed through a short column $(8 \times 1.5 \text{ cm})$ of Florisil; eluting with toluene yielded the orange product band, which was collected. After the solvent was removed under vacuum, the residue was extracted with 30 mL of hexanes. The hexanes solution was added to a neutral alumina column (15 \times 1.5 cm), and a yellow band containing the product was eluted with Et_2O/h exames (1:10). During slow evaporation of the solvents under vacuum, a yellow precipitate began to form. Cooling to -20 °C yielded 210 mg of **2** (63% based on *cis*-Ir(CO)₂(Cl)(*p*-NH₂C₆H₄CH₃) as yellow crystals. ¹H NMR (CD₂Cl₂): δ 7.34-7.50 (m, 12 H, C₆H₄), 5.14 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp). IR (CH₂Cl₂): *v*(CO) 1930 cm⁻¹.

CpIr(CO)(PR3) Compounds 1, 3, and 5-**10.** These compounds were synthesized in the two steps given in eqs 4 and 5 according to the procedure outlined for the preparation of **2** above. The amounts of reactants (mmol) and solvents were the same as for **2**. Below are given, in order, the times for reaction 4, *υ*(CO) values for the *trans*-IrCl(CO)(PR_3)₂ intermediates in toluene, times for reaction 5, yields, and spectral data for the isolated CpIr(CO)(PR₃) products.

CpIr(CO)[P(*p***-C6H4CF3)3] (1):** 30 min, 1974 cm-1, 3 h, 73%. 1H NMR (CD₂Cl₂): δ 7.5-7.7 (m, 12 H, C₆H₄), 5.18 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp). 31P{1H} (CDCl3): *δ* 18.58 (s). IR (CH2Cl2): *υ*(CO) 1936 cm^{-1} .

 $CpIr(CO)[P(p-C_6H_4F)_3]$ (3): 3 h, 1967 cm⁻¹, 2 h, 52%. ¹H NMR (CD₂Cl₂): δ 7.2-7.5 (m, 12 H, C₆H₄), 5.14 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp). ³¹P{¹H} (CDCl₃): δ 14.01 (s). IR (CH₂Cl₂): *v*(CO) 1928 cm⁻¹.

- (9) Sowa, J. R., Jr.; Zanotti, V.; Facchin, G.; Angelici, R. J. *J. Am. Chem. Soc.* **1991**, *113*, 9185.
- (10) Sowa, J. R., Jr.; Angelici, R. J. *J. Am. Chem. Soc.* **1991**, *113*, 2537. (11) Collman, J. P.; Sears, C. T., Jr.; Kubota, M. *Inorg. Synth.* **1990**, *28*, 92.
- (12) (a) Oliver, A. J.; Graham, W. A. G. *Inorg. Chem.* **1970**, *9*, 2653. (b) Hart-Davis, A. J.; Graham, W. A. G. *Inorg. Chem.* **1970**, *9*, 2658.

^{(5) (}a) Coville, N. J.; duPlooy, K. E.; Pickl, W. *Coord. Chem. Re*V*.* **1992**, *116*, 1. (b) Janiak, C.; Schumann, H. *Ad*V*. Organomet. Chem.* **1991**, *33*, 291. (c) Ryan, M. F.; Siedle, A. R.; Burk, M. J.; Richardson, D. E. *Organometallics* **1992**, *11*, 4231. (d) White, D.; Coville, N. J. *Ad*V*. Organomet. Chem.* **1994**, *36*, 95. (e) Blais, M. S.; Rausch, M. D. *Organometallics* **1994**, *13*, 3557. (f) Graham, P. B.; Rausch, M. D.; Taschler, K.; von Philipsborn, W. *Organometallics* **1991**, *10*, 3049. (g) Sorensen, T. S.; Whitworth, S. M. *J. Am. Chem. Soc.* **1990**, *112*, 6647. (h) Gassman, P. G.; Winter, C. H. *J. Am. Chem. Soc.* **1988**, *110*, 6130. (i) Gassman, P. G.; Winter, C. H. *Organometallics* **1991**, *10*, 1592.

⁽⁶⁾ McNally, J. P.; Leong, U. S.; Cooper, N. J. In *Experimental Organometallic Chemistry*; Wayda, A. L., Darensbourg, M. Y., Eds.; ACS Symposium Series 357; American Chemical Society: Washington, DC, 1987; pp $6-23$.

 $\text{CpIr(CO)}[\text{P}(p\text{-}C_6\text{H}_4\text{Me})_3]$ (5): 50 min, 1963 cm⁻¹, 1 h, 50%. ¹H NMR (CD₂Cl₂): δ 7.34-7.50 (m, 12 H, C₆H₄), 5.11 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 2.39 (s, 9 H, CH₃). ³¹P{¹H} (CDCl₃): δ 13.67 (s). IR (CH₂-Cl₂): v (CO) 1921 cm⁻¹.

 $CpIr(CO)[P(p-C₆H₄OMe)₃] (6): 20 min, 1961 cm⁻¹, 1 h, 64%. ¹H$ NMR (CD₂Cl₂): δ 7.3-7.5 (m, 12 H, C₆H₄), 5.12 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 3.90 (s, 9 H, CH3O). IR (CH2Cl2): *υ*(CO) 1919 cm-1.

CpIr(CO)(PPh₂Me) (7): 20 min, 1958 cm⁻¹, 30 min, 46%. ¹H NMR (CD₂Cl₂): δ 7.4-7.7 (m, 10 H, C₆H₅), 5.13 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 2.30 (d, J_{PH} = 9.9 Hz, 3 H, Me). IR (CH₂Cl₂): *v*(CO) 1922 cm^{-1} .

CpIr(CO)(PMe₂Ph) (8): 20 min, 1950 cm⁻¹, 30 min, 42%. ¹H NMR (CD₂Cl₂): δ 7.4–7.7 (m, 5 H, C₆H₅), 5.24 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 2.02 (d, *J*PH) 10.2 Hz, 6 H, Me). IR (CH2Cl2): *υ*(CO) 1918 cm^{-1} .

CpIr(CO)(PMe3) (9): 10 min, 1945 cm-1, 30 min, 42%. 1H NMR (CD_2Cl_2) : δ 5.30 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 1.77 (d, J_{PH} = 10.2 Hz, 9 H, Me). IR (CH₂Cl₂): *v*(CO) 1916 cm⁻¹.

CpIr(CO)(PEt₃) (10): 30 min, 1940 cm⁻¹, 40 min, 40%. ¹H NMR (CD₂Cl₂): δ 5.26 (d, *J*_{PH} = 0.9 Hz, 5 H, C_p), 1.77 (m, 6 H, CH₂), 1.02 (m, 9 H, CH₃). ³¹P{¹H} (CDCl₃): δ 6.63 (s). IR (CH₂Cl₂): *v*(CO) 1912 cm⁻¹.

 $CpIr(CO)(PCy_3)$ (11). To a flask containing KCp (5 mmol) was added a dark purple solution of $cis-Ir(CO)₂(Cl)(p-NH₂C₆H₄CH₃)$ (400 mg, 1.0 mmol) in toluene (25 mL). The mixture was refluxed 14 h until the IR spectrum showed two new bands (*υ*(CO), toluene: 2035 s, 1966 s cm⁻¹) for CpIr(CO)₂¹³ and no bands corresponding to the starting material (v (CO), toluene: 2074 s, 1991 s cm⁻¹). The color of the reaction solution changed from the initial dark purple to yellow. After cooling to room temperature, the yellow solution was filtered and reduced to 5 mL under vacuum. This concentrated solution was passed through a short column (8×1.5 cm) of neutral alumina packed in hexanes; eluting with hexanes yielded a yellow band, which was collected. After the solution volume was concentrated to 5 mL under vacuum, 15 mL of decane was added. To the yellow solution was added 850 mg of tricyclohexylphosphine (PCy3) (1.5 mmol). The mixture was refluxed overnight until the IR spectrum showed a new band (*v*(CO), decane: 1928 cm⁻¹) for **11** and the complete disappearance of $CpIr(CO)₂$. After cooling to room temperature, the solution was added to a neutral alumina column (15×1.5 cm). Eluting with hexanes (150 mL) removed decane and unreacted PCy₃. The yellow product band was eluted with Et_2O/h exanes (1:5). During slow evaporation of the solvents under vacuum, a yellow precipitate began to form. Cooling to -20 °C yielded 220 mg of 11 (40% based on cis -Ir(CO)₂(Cl)(p -NH₂C₆H₄CH₃) as yellow crystals. ¹H NMR (CD₂-Cl₂): δ 5.23 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 1.3-2.1 (m, 33 H, Cy). IR (CH2Cl2): *υ*(CO) 1909 cm-1.

Synthesis of Cp*Ir(CO)(PR3) Compounds 12-**16.** The starting material, $[Cp*IrCl₂]$ ₂ was prepared as an orange powder in 85% yield from the reaction of $IrCl₃·xH₂O$ with $Cp*H$ (Aldrich) in MeOH under reflux for 48 h according to a known procedure.^{14,15} Cp*Ir(CO)₂ was synthesized as yellow crystals from $Fe₃(CO)₁₂$ (Aldrich) and $[Cp*IrCl₂]$ ₂ by refluxing in benzene for 24 h as previously reported.^{9,15} Yield: 80%. ¹H NMR (CDCl₃): δ 2.18 (s, Cp^{*}). IR (CH₂Cl₂): $ν$ (CO) 2009 (s), 1938 (s) cm^{-1} . All of the Cp*Ir(CO)(PR₃) complexes were synthesized in reactions of $Cp*Ir(CO)₂$ with the appropriate phosphine in decane. The purity and identity of each compound were established by comparing its infrared and ¹ H NMR spectra with the previously reported literature values for Cp*Ir(CO)(PEt₃)¹⁶ and by selected elemental analyses. Below is given the general procedure for these preparations.

To a yellow solution of $Cp*Ir(CO)_2$ (200 mg, 0.50 mmol) in decane (10 mL) was added 1.5 equiv of PR₃ (0.75 mmol) . The mixture was refluxed for 2-24 h until the IR spectrum showed only the new band for Cp*Ir(CO)(PR3) and the complete disappearance of Cp*Ir(CO)2 (*υ*-

- (13) Fischer, E. O.; Brenner, K. S. *Z. Naturforsch., B* **1962**, *17*, 774.
- (14) White, C. W.; Yates, A.; Maitlis, P. M. *Inorg. Synth.* **1992**, *29*, 228. (15) (a) Kang, J. W.; Moseley, K.; Maitlis, P. M. *J. Am. Chem. Soc.* **1969**,
- *91*, 5970. (b) Ball, R. G.; Graham, W. A. G.; Heinekey, D. M.; Hoyano, J. K.; McMaster, A. D.; Mattson, B. M.; Michel, S. T. *Inorg. Chem.* **1990**, *29*, 2023.
- (16) Del Paggio, A. A.; Muetterties, E. L.; Heinekey, D. M.; Day, V. W.; Day, C. S. *Organometallics* **1986**, *5*, 575.

(CO), decane: 2058 s, 1918 s cm^{-1}). After the mixture cooled to room temperature, yellow to orange crystals began to precipitate. The crystals were filtered off and washed with hexanes $(3 \times 2 \text{ mL})$. The combined filtrates were chromatographed on a neutral alumina column $(15 \times 1.5 \text{ cm})$. Eluting with hexanes (150 mL) removed decane and free PR₃; a yellow band containing additional $Cp*Ir(CO)(PR_3)$ was eluted with Et_2O/h exances (1:5). During slow evaporation of the solvents under vacuum, a yellow precipitate began to form. Cooling to -20 °C yielded more crystals. The combined yellow product was obtained in 75-90% yield. Crystals of **13** and **14** were obtained by dissolving the compound in a minimum amount of $CH₂Cl₂$, layering the solution with a 5-fold volume of hexanes, and then cooling to -20 °C for 24 h.

Below are given reaction times, *υ*(CO) values of the products in decane, yields, and spectral data for all Cp*Ir(CO)(PR3) complexes prepared by the above method.

Cp^{*}Ir(CO)[P(*p***-C₆H₄CF₃)₃] (12):** 24 h, 1944 cm⁻¹, 75%. ¹H NMR (CD₂Cl₂): δ 7.6 (m, 12 H, C₆H₄), 1.82 (d, J_{PH} = 1.5 Hz, 15 H, Cp^{*}). ³¹P{¹H} (CDCl₃): δ 21.69 (s). IR (CH₂Cl₂): *v*(CO) 1920 cm⁻¹.

Cp^{*}Ir(CO)[P(*p***-C₆H₄Cl)**₃] (13): 24 h, 1939 cm⁻¹, 83%. ¹H NMR (CD₂Cl₂): δ 7.4 (m, 12 H, C₆H₄), 1.82 (d, J_{PH} = 1.5 Hz, 15 H, Cp^{*}). ³¹P{¹H} (CDCl₃): δ 20.76 (s). IR (CH₂Cl₂): *v*(CO) 1917 cm⁻¹. Anal. Calcd for C₂₉H₂₇IrOPCl₃: C, 48.30; H, 3.77. Found: C, 48.43; H, 3.84.

 $\mathbf{Cp*Ir(CO)}(\mathbf{PPh}_3)$ (14): 4 h, 1935 cm⁻¹, 90%. ¹H NMR (CD₂Cl₂): δ 7.4 (m, 15 H, C₆H₅), 1.81 (d, J_{PH} = 1.5 Hz, 15 H, Cp^{*}). ³¹P{¹H} (CDCl₃): δ 20.47 (s). IR (CH₂Cl₂): *v*(CO) 1912 cm⁻¹. Anal. Calcd for C29H30IrOP: C, 56.38; H, 4.90. Found: C, 56.46; H, 4.90.

Cp^{*}Ir(CO)(PPh₂Me) (15): 2 h, 1928 cm⁻¹, 78%. ¹H NMR (CD₂-Cl₂): δ 7.6 (m, 10 H, C₆H₅), 1.82 (d, *J*_{PH} = 1.5 Hz, 15 H, Cp^{*}). ³¹P{¹H} (CDCl₃): δ 25.18 (s). IR (CH₂Cl₂): *v*(CO) 1910 cm⁻¹.

Cp^{*}Ir(CO)(PMe₃) (16): 2 h, 1928 cm⁻¹, 75%. ¹H NMR (CD₂-Cl₂): δ 2.08 (d, J_{PH} = 1.5 Hz, 15 H, Cp^{*}), 1.58 (d, J_{PH} = 9.9 Hz, 9 H, Me). IR (CH₂Cl₂): *v*(CO) 1909 cm⁻¹

Protonation Reactions. Compounds **1**-**16** were protonated for NMR characterization of the $[Cp'Ir(CO)(PR₃)(H)]CF₃SO₃$ products by dissolving approximately 5 mg of the complex in 0.50 mL of CD_2Cl_2 in an NMR tube under nitrogen. To the solution was added 1 equiv of $CF₃SO₃H$ with a gastight microliter syringe through a rubber septum. The color of the solution changed from yellow to colorless immediately upon mixing. Yields of the protonated products as determined by IR and 1H NMR spectroscopy were quantitative. The [CpIr(CO)- $(PR₃)(H)$]CF₃SO₃ compounds were characterized by their spectra as compared with those of $2H^+$, $4H^+$, and $7-9H^+$, which were previously reported.⁹ $4H^+$ and $5H^+$ were isolated as white solids by evaporating their solutions and recrystallizing the residues from CH_2Cl_2/Et_2O at 25 $^{\circ}C.$

Spectroscopic data for the $[Cp*Ir(CO)(PR₃)(H)]CF₃SO₃ compounds$ are similar to those for [CpIr(CO)(PR₃)(H)]CF₃SO₃ except the *ν*(CO) values are lower than those in the Cp complexes, which is consistent with the stronger electron donating ability of Cp^* compared with Cp^5 .

Compound $14H^{+}CF_{3}SO_{3}^{-}$ was isolated as a white solid precipitate when 14 (50 mg) was protonated with $CF₃SO₃H$ (1 equiv) in Et₂O (5 mL) solution. Crystals of $14H^+CF_3SO_3$ ⁻ were obtained by dissolving the white solid in a minimum amount of $CH₂Cl₂$, layering the solution with a 3-fold volume of diethyl ether, and then cooling to -20 °C for 24 h.

Spectroscopic data at room temperature for compounds $1H^+ - 16H^+$ are listed below.

{**CpIr(CO)[P(***p***-C6H4CF3)3](H)**}**CF3SO3 (1H**⁺**CF3SO3** -**)**. ¹ H NMR (CD₂Cl₂): δ 7.3-7.6 (m, 12 H, C₆H₄), 5.94 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), -14.26 (d, $J_{PH} = 25.2$ Hz, 1 H, Ir-H). ³¹P{¹H} (CDCl₃): δ 5.11 (s). IR (CH₂Cl₂): v (CO) 2067 cm⁻¹.

{**CpIr(CO)[P(***p***-C6H4Cl)3](H)**}**CF3SO3 (2H**⁺**CF3SO3** -**).** ¹ H NMR (CD_2Cl_2) : δ 7.3-7.6 (m, 12 H, C₆H₄), 5.94 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), -14.45 (d, *J*_{PH} = 24.4 Hz, 1 H, Ir-H). IR (CH₂Cl₂): *v*(CO) 2063 cm⁻¹.

{**CpIr(CO)[P(***p***-C6H4F)3](H)**}**CF3SO3 (3H**⁺**CF3SO3** -**).** 1H NMR (CD₂Cl₂): δ 7.3-7.6 (m, 12 H, C₆H₄), 5.86 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), -14.41 (d, $J_{PH} = 24.6$ Hz, 1 H, Ir-H). ³¹P{¹H} (CDCl₃): δ 0.99 (s). IR (CH₂Cl₂): v (CO) 2068 cm⁻¹.

[CpIr(CO)(PPh₃)(H)]CF₃SO₃ (4H⁺CF₃SO₃⁻). ¹H NMR (CD₂-Cl₂): δ 7.5-7.8 (m, 15 H, C₆H₅), 5.88 (d, J_{PH} = 0.9 Hz, 5 H, Cp), -14.44 (d, $J_{PH} = 24.1$ Hz, 1 H, Ir-H); ³¹P{¹H} (CDCl₃): δ 3.65 (s). IR (CH₂Cl₂): v (CO) 2063 cm⁻¹.

{**CpIr(CO)[P(***p***-C6H4Me)3](H)**}**CF3SO3 (5H**⁺**CF3SO3** -**).** ¹ H NMR (CD_2Cl_2) : δ 7.3-7.6 (m, 12 H, C₆H₄), 5.79 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), 2.45 (s, 3 H, Me), -14.46 (d, $J_{PH} = 23.7$ Hz, 1 H, Ir-H). ³¹P{¹H} (CDCl₃): δ 1.29 (s). IR (CH₂Cl₂): *v*(CO) 2060 cm⁻¹.

{**CpIr(CO)[P(***p***-C6H4OMe)3](H)**}**CF3SO3 (6H**⁺**CF3SO3** -**).** ¹ H NMR (CD_2Cl_2) : δ 7.3-7.6 (m, 12 H, C₆H₄), 5.78 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), 3.91 (s, 9 H, MeO), -14.52 (d, $J_{PH} = 24.0$ Hz, 1 H, Ir-H). IR (CH2Cl2): *υ*(CO) 2058 cm-1.

[CpIr(CO)(PPh2Me)(H)]CF3SO3 (7H⁺**CF3SO3** -**).** 1H NMR (CD₂Cl₂): δ 7.3-7.6 (m, 10 H, C₆H₅), 5.90 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 2.70 (d, J_{PH} = 12.0 Hz, 3 H, Me), -14.66 (d, J_{PH} = 23.2 Hz, 1 H, Ir-H). IR (CH₂Cl₂): *v*(CO) 2061 cm⁻¹.

[CpIr(CO)(PPhMe2)(H)]CF3SO3 (8H⁺**CF3SO3** -**).** 1H NMR (CD_2Cl_2) : δ 7.3–7.6 (m, 5 H, C₆H₅), 5.89 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 2.36 (d, $J_{\text{PH}} = 11.4$ Hz, 3 H, Me), 2.39 (d, $J_{\text{PH}} = 11.4$ Hz, 3 H, Me), -15.03 (d, *J*PH) 25.1 Hz, 1 H, Ir-H). IR (CH2Cl2): *υ*(CO) 2057 cm^{-1} .

[CpIr(CO)(PMe3)(H)]CF3SO3 (9H⁺**CF3SO3** -**).** 1H NMR (CD2- Cl₂): δ 5.90 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 2.12 (d, J_{PH} = 12.0 Hz, 9 H, Me), −15.32 (d, *J*_{PH} = 25.3 Hz, 1 H, Ir-H). IR (CH₂Cl₂): *v*(CO) 2052 cm⁻¹.

[CpIr(CO)(PEt3)(H)]CF3SO3 (10H⁺**CF3SO3** -**).** ¹ H NMR (CD2- Cl₂): δ 5.89 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 1.77 (m, 6 H, CH₂), 1.01 (m, 9 H, Me), -14.66 (d, $J_{PH} = 23.2$ Hz, 1 H, Ir-H). IR (CH₂Cl₂): *ν*- (CO) 2061 cm⁻¹.

[CpIr(CO)(PCy3)(H)]CF3SO3 (11H⁺**CF3SO3** -**).** 1H NMR (CD2- Cl₂): δ 5.91 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 1.3-2.1 (m, 33 H, Cy), -14.64 (d, $J_{PH} = 23.2$ Hz, 1 H, Ir-H). IR (CH₂Cl₂): $v(CO)$ 2059 cm⁻¹.

{**Cp*Ir(CO)[P(***p***-C6H4CF3)3](H)**}**CF3SO3 (12H**⁺**CF3SO3** -**).** ¹ H NMR (CD₂Cl₂): δ 7.6–7.8 (m, 12 H, C₆H₄), 1.99 (s, 15 H, Cp^{*}), -14.05 (d, $J_{PH} = 27.6$ Hz, 1 H, Ir-H). IR (CH₂Cl₂): $v(CO)$ 2051 cm^{-1} .

{**Cp*Ir(CO)[P(***p***-C6H4Cl)3](H)**}**CF3SO3 (13H**⁺**CF3SO3** -**).** ¹ H NMR (CD2Cl2): *δ* 7.4-7.6 (m, 12 H, C6H4), 1.96 (s, 15 H, Cp*), -14.28 (d, *J*PH) 27.6 Hz, 1 H, Ir-H). IR (CH2Cl2): *υ*(CO) 2045 cm-1.

{**Cp*Ir(CO)[P(C6H5)3](H)**}**CF3SO3 (14H**⁺**CF3SO3** -**).** 1H NMR (CD2Cl2): *δ* 7.3-7.5 (m, 15 H, C6H5), 1.93 (s, 15 H, Cp*), -14.28 $(d, J_{PH} = 26.1 \text{ Hz}, 1 \text{ H}, \text{Ir-H}).$ IR $(CH_2Cl_2): v(CO) 2042 \text{ cm}^{-1}$. Anal. Calcd for C₃₀H₃₁IrF₃O₄PS: C, 46.93; H, 4.07. Found: C, 46.91; H, 4.09.

[Cp*Ir(CO)(PPh2Me)(H)]CF3SO3 (15H⁺**CF3SO3** -**).** 1H NMR (CD2Cl2): *δ* 7.3-7.6 (m, 10 H, C6H5), 2.00 (s, 15 H, Cp*), 2.50 (d, J_{PH} = 12.0 Hz, 3 H, Me), -14.66 (d, J_{PH} = 27.2 Hz, 1 H, Ir-H). IR (CH2Cl2): *υ*(CO) 2040 cm-1.

 $[CP^*Ir(CO)(PMe_3)(H)]CF_3SO_3$ (16H⁺CF₃SO₃⁻). ¹H NMR (CD₂Cl₂): δ 2.09 (s, 15 H, Cp^{*}), 1.91 (d, J_{PH} = 12.0 Hz, 9 H, Me), -15.30 (d, *J*PH) 29.1 Hz, 1 H, Ir-H). IR (CH2Cl2): *υ*(CO) 2038 cm^{-1} .

Reactions of 1-**16 with CH3I.** Compounds **1**-**16** were reacted (eq 2) with CH₃I for ¹H NMR characterization of the $[Cp'Ir(CO)(PR₃)$ -(CH3)]I products by dissolving approximately 5 mg of the complex in 0.50 mL of CD_2Cl_2 in an NMR tube under nitrogen. To the solution was added 10 equiv of CH3I with a gastight microliter syringe through a rubber septum. The color of the solution changed from yellow to colorless during the time of the study $(2 s-4 h)$. Both NMR and IR spectra showed quantitatively the disappearance of the starting material and the appearance of new bands for $[\text{Cp'Ir(CO)(PR₃)(CH₃)}]$ I. $4CH₃$ ⁺**I**and **9CH3** ⁺**I**- were isolated as white solids by evaporating their solutions and recrystallizing them from CH_2Cl_2/Et_2O at 25 °C. Compound 14CH₃⁺I⁻ was isolated as a white solid by the reaction of 14 (50 mg) with CH₃I (10 equiv) in Et₂O (5 mL) solution. Crystals of $14CH₃$ ⁺**I**⁻ were formed by dissolving the white solid in a minimum amount of $CH₂Cl₂$, layering the solution with a 3-fold volume of diethyl ether, and then cooling to -20 °C for 24 h.

Spectroscopic data for $1CH_3^+I^- - 11CH_3^+I^-$ are very similar to those previously reported¹² for $4CH_3$ ⁺I⁻. ¹H NMR and IR data for the [Cp*Ir(CO)(PR3)(CH3)]I complexes are similar to those for [CpIr(CO)- $(PR_3)(CH_3)$]I except the $\nu(CO)$ values are lower for the Cp^{*} compounds,

which indicates that Cp* is a stronger donor than Cp. Below are listed spectral data for all of the [Cp'Ir(CO)(PR₃)(CH₃)]I complexes.

 ${CpIr(CO)[P(p-C_6H_4CF_3)_3] (CH_3)}$ **I** (1CH₃⁺I⁻). ¹H NMR (CD₂Cl₂): δ 7.6-7.8 (m, 12 H, C₆H₄), 6.09 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 1.18 (d, *J*_{PH} = 5.4 Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2054 cm^{-1} .

{**CpIr(CO)[P(***p***-C6H4Cl)3](CH3)**}**I (2CH3** ⁺**I**-**).** ¹ H NMR (CD2- Cl₂): δ 7.4–7.7 (m, 12 H, C₆H₄), 5.97 (d, *J*_{PH} = 0.9 Hz, 5 H, Cp), 1.13 (d, $J_{\text{PH}} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): v (CO) 2051 cm⁻¹.

{**CpIr(CO)[P(***p***-C6H4F)3](CH3)**}**I (3CH3** ⁺**I**-**).** 1H NMR (CD2- Cl₂): δ 7.4-7.7 (m, 12 H, C₆H₄), 5.99 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), 1.15 (d, $J_{\text{PH}} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2046 cm⁻¹.

[CpIr(CO)(PPh3)(CH3)]I (4CH3 ⁺**I**-**).** ¹ H NMR (CD2Cl2): *δ* 7.4- 7.7 (m, 15 H, C₆H₅), 5.87 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 1.15 (d, J_{PH} = 5.1 Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2049 cm⁻¹.

{**CpIr(CO)[P(***p***-C6H4Me)3](CH3)**}**I (5CH3** ⁺**I**-**).** 1H NMR (CD2- Cl₂): δ 7.4-7.7 (m, 12 H, C₆H₄), 5.87 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), 2.46 (s, 9 H, Me), 1.13 (d, $J_{PH} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *υ*(CO) 2046 cm-1.

 ${CpIr(CO)[P(p-C_6H_4OMe)_3](CH_3)}$ **I** (6CH₃⁺I⁻). ¹H NMR (CD₂Cl₂): δ 7.3-7.6 (m, 12 H, C₆H₄), 5.87 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), 3.90 (s, 9 H, MeO), 1.14 (d, $J_{PH} = 5.1$ Hz, 3 H, Ir-CH₃). IR (CH2Cl2): *υ*(CO) 2045 cm-1.

 $[CpIr(CO)(PPh₂Me)(CH₃)]I$ (7 $CH₃$ ⁺I⁻). ¹H NMR (CD₂Cl₂): δ 7.4-7.7 (m, 10 H, C₆H₅), 5.92 (d, J_{PH} = 0.9 Hz, 5 H, Cp), 2.57 (d, J_{PH} $= 10.5$ Hz, 3 H, Me), 1.07 (d, $J_{PH} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH₂-Cl₂): *v*(CO) 2047 cm⁻¹.

 $[CpIr(CO)(PPhMe₂)(CH₃)]I (8CH₃⁺I⁻).¹H NMR (CD₂Cl₂): $\delta$$ 7.4-7.7 (m, 5 H, C₆H₅), 5.95 (d, *J*_{PH} = 0.9 Hz, 5 H, C_p), 2.42 (d, *J*_{PH} $=$ 11.4 Hz, 3 H, Me), 2.32 (d, J_{PH} = 11.4 Hz, 3 H, Me), 1.06 (d, J_{PH} $=$ 5.4 Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): v (CO) 2045 cm⁻¹.

[CpIr(CO)(PMe3)(CH3)]I (9CH3 ⁺**I**-**).** 1H NMR (CD2Cl2): *δ* 6.06 $(d, J_{PH} = 0.9 Hz, 5 H, Cp), 2.07 (d, J_{PH} = 11.7 Hz, 9 H, Me), 1.05 (d,$ $J_{\text{PH}} = 5.4 \text{ Hz}, 3 \text{ H}, \text{ Ir-CH}_3$). IR (CH₂Cl₂): *v*(CO) 2041 cm⁻¹.

[CpIr(CO)(PEt3)(CH3)]I (10CH3 ⁺**I**-**).** ¹ H NMR (CD2Cl2): *δ* 6.06 (d, $J_{PH} = 0.9$ Hz, 5 H, Cp), 1.77 (m, 6 H, CH₂), 1.05 (m, 9 H, Me), 1.14 (d, $J_{\text{PH}} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2041 cm⁻¹.

[CpIr(CO)(PCy3)(CH3)]I (11CH3 ⁺**I**-**).** ¹ H NMR (CD2Cl2): *δ* 6.06 $(d, J_{PH} = 0.9 \text{ Hz}, 5 \text{ H}, \text{Cp}), 1.3-2.1 \text{ (m, 33 H, Cy)}, 1.14 \text{ (d, } J_{PH} = 3.0)$ Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2037 cm⁻¹.

 ${Cp*Ir(CO)[P(p-C_6H_4CF_3)_3(CH_3)}I$ (12CH₃⁺I⁻). ¹H NMR (CD₂Cl₂): δ 7.6-7.8 (m, 12 H, C₆H₄), 1.84 (d, *J*_{PH} = 2.4 Hz, 15 H, Cp^{*}), 0.75 (d, *J*_{PH} = 5.7 Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2032 cm^{-1} .

 ${Cp*Ir(CO)[P(p-C_6H_4Cl)_3(CH_3)}I$ (13CH₃⁺I⁻). ¹H NMR (CD₂Cl₂): δ 7.4-7.7 (m, 12 H, C₆H₄), 1.81 (d, $J_{PH} = 2.4$ Hz, 15 H, Cp^{*}), 0.70 (d, *J*_{PH} = 5.4 Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): *ν*(CO) 2032 cm^{-1} .

{**Cp*Ir(CO)[P(C6H5)3](CH3)**}**I (14CH3** ⁺**I**-**).** 1H NMR (CD2Cl2): *δ* 7.3–7.5 (m, 15 H, C₆H₅), 1.77 (d, J_{PH} = 2.4 Hz, 15 H, Cp^{*}), 0.73 (d, $J_{PH} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH₂Cl₂): $v(CO)$ 2030 cm⁻¹. Anal. Calcd for C₃₀H₃₃IrOPI: C, 47.43; H, 4.38. Found: C, 47.37; H, 4.44.

[Cp*Ir(CO)(PPh2Me)(CH3)]I (15CH3 ⁺**I**-**).** ¹ H NMR (CD2Cl2): *δ* 7.3-7.5 (m, 10 H, C₆H₅), 2.37 (d, J_{PH} = 10.5 Hz, 3 H, Me), 1.85 (d, $J_{\text{PH}} = 2.1$ Hz, 15 H, Cp^{*}), 0.68 (d, $J_{\text{PH}} = 5.4$ Hz, 3 H, Ir-CH₃). IR (CH2Cl2): *υ*(CO) 2030 cm-1.

 $[Cp*Ir(CO)(PMe₃)(CH₃)]I$ (16CH₃⁺I⁻). ¹H NMR (CD₂Cl₂): δ 2.05 (d, J_{PH} = 2.1 Hz, 15 H, Cp^{*}), 1.82 (d, J_{PH} = 10.8 Hz, 9 H, Me), 0.61 (d, $J_{\text{PH}} = 6.0 \text{ Hz}$, 3 H, Ir-CH₃). IR (CH₂Cl₂): *v*(CO) 2030 cm⁻¹.

Protonation of Phosphines. Phosphines **17**-**20** were protonated for NMR characterization by dissolving approximately 5 mg of the phosphine in 0.50 mL of CDCl₃ in an NMR tube under nitrogen. To the solution was added 1 equiv of CF_3SO_3H with a gastight microliter syringe through a rubber septum. Both ${}^{1}H$ and ${}^{31}P$ NMR spectra showed the disappearance of the starting material and the appearance of new bands for the [HPR3]CF3SO3. The 1H NMR data for **19** are the same as those reported previously.17 Yields of the protonated products as determined by 1H NMR spectroscopy are quantitative. Spectroscopic data at room temperature for **17**-**19** and **17H**+-**19H**⁺ are listed below.

(17) Wada, M.; Higashizaki, S. *J. Chem. Soc., Chem. Commun.* **1984**, 482.

P(2-C₆H₄OMe)₃ (17). ¹H NMR (CDCl₃): δ 7.32 (m, 3 H), 6.85 (m, 6 H), 6.65 (m, 3 H), 3.74 (s, 9 H).

P[2,6-C₆H₃(OMe)₂]₃ (18). ¹H NMR (CDCl₃): δ 7.12 (td, 8.1 Hz, 0.6 Hz, 3 H), 6.45 (dd, 8.4 Hz, 3.0 Hz, 6 H), 3.47 (s, 18 H). 31P NMR (CDCl₃): δ 10.17 (s).

P[2,4,6-C₆H₂(OMe)₃]₃ (19). ¹H NMR (CDCl₃): δ 6.03 (d, 2.4 Hz, 6 H), 3.78 (s, 9 H), 3.49 (s, 18 H). 31P NMR (CDCl3): *δ* 8.99 (s).

[HP(2-C6H4OMe)3]CF3SO3 (17H⁺**CF3SO3** -**).** 1H NMR (CDCl3): *δ* 8.65 (d, *J*_{PH} = 530 Hz, 1 H), 7.64 (m, 3 H), 7.05 (m, 9 H), 3.82 (s, 9 H).

{**HP[2,6-C6H3(OMe)2]3**}**CF3SO3 (18H**⁺**CF3SO3** -**).** 1H NMR (CDCl₃): δ 8.50 (d, J_{PH} = 533 Hz, 1 H), 7.59 (t, 8.4 Hz, 3 H), 6.64 (dd, 8.4 Hz, 5.7 Hz, 6 H), 3.68 (s, 18 H). 31P NMR (CDCl3): *δ* -50.17 (s).

{**HP[2,4,6-C6H2(OMe)3]3**}**CF3SO3 (19H**⁺**CF3SO3** -**).** 1H NMR (CDCl₃): δ 8.35 (d, J_{PH} = 541 Hz, 1 H), 6.17 (b s, 6 H), 3.88 (s, 9 H), 3.69 (s, 18 H). ³¹P NMR (CDCl₃): δ -52.23 (s).

It has been reported¹⁷ that **19** ($pK_a = 11.2$, cone angle = 184°) reacts with CH_2Cl_2 to form $ClCH_2PR_3$ ⁺ Cl^- in $t_{1/2}$ < 15 min, with (*i*-Pr)Br in 1 h, and with (*i*-Pr)Cl in 15 h. We found that **19** reacts with DCE solvent within 50 min at room temperature; reaction of **18** with DCE cannot be detected for 20 h; **17** and **20** are stable in DCE. The NMR results are given below.

Product of the Reaction of 18 with DCE. ¹H NMR (CDCl₃): δ 7.59 (t, 8.4 Hz, 3 H), 6.67 (dd, 8.4 Hz, 5.4 Hz, 6 H), 3.74 (b s, 4 H), 3.65 (s, 18 H). 31P NMR (CDCl3): *δ* 2.32 (s).

Product of the Reaction of 19 with DCE. ¹H NMR (CDCl₃): δ 6.16 (d, *J*_{PH} = 4.8 Hz, 6 H), 3.92 (s, 9 H), 3.74 (b s, 4 H), 3.66 (s, 18 H). ³¹P NMR (CDCl₃): δ 8.98 (s).

Calorimetric Studies of Reaction 1. Determinations of the heats of protonation (ΔH_{HM}) of the Cp'Ir(CO)(PR₃) complexes with 0.1 M $CF₃SO₃H$ in 1,2-dichloroethane (DCE) solvent at 25.0 °C were performed using a Tronac Model 458 isoperibol calorimeter as originally described¹⁸ and then modified.¹⁰ A 5-mL aliquot of a freshly prepared solution of the complex (weighed in a N_2 -filled glovebox for the airsensitive $Cp*Ir(CO)(PR_3)$ complexes) in DCE (approximately 0.020 M) was injected into the reaction Dewar vessel via syringe, followed by 45 mL of DCE. Typically a calorimetric run consisted of three sections:¹⁹ initial heat capacity calibration, titration, and final heat capacity calibration. Each section was preceded by a baseline acquisition period. A 3- or 2-min titration period was used for the compounds in this study. During the titration period, approximately 1.2 or 0.8 mL of a 0.1 M CF₃SO₃H solution (standardized to a precision of \pm 0.0002 M) in DCE solvent was added at a constant rate (0.3962 mL/ min) to 50.0 mL of a 2.6 or 1.7 mM solution of the complex $(5-10\%)$ excess) in DCE at 25.0 °C. Infrared spectra of the titrated solutions showed $\nu(CO)$ bands for the Cp[']Ir(CO)(PR₃)H⁺ products and weak bands for the excess $Cp'Ir(CO)(PR₃)$ reactants.

The ΔH_{HM} values for each complex were measured using two different standardized acid solutions and are reported as the average of at least four titrations and as many as six. The heat of dilution (ΔH_{dil}) of the acid in DCE (-0.2 kcal/mol)¹⁰ was used to correct the reaction enthalpies. The error in ΔH_{HM} is reported as the average deviation from the mean of all the determinations. The accuracy of the calorimeter was monitored before each set of ∆*H*_{HM} determinations by titrating 1,3-diphenylguanidine (GFS Chemicals) with $CF₃SO₃H$ in DCE $(-37.0 \pm 0.3 \text{ kcal/mol}; \text{ lit.}^{18} -37.2 \pm 0.4 \text{ kcal/mol}).$

Determinations of the heats of protonation (Δ*H*_{HP}) of the phosphines **17, 18, and 20** with 0.1 M CF_3SO_3H in 1,2-dichloroethane (DCE) solvent at 25.0 °C were performed in the same manner as described above. A 3-min titration period was used for these studies. The phosphine solutions were prepared by adding the solid compound to the argon-filled Dewar flask. The flask was then attached to the calorimeter's insert assembly and flushed with argon; then 50 mL of DCE was added by syringe.

Kinetic Studies of CpIr(CO)(PR3) in Reaction 2. In a typical experiment, $2-10$ mg of CpIr(CO)(PR₃) and 10 mg (0.0410 mmol) of

the internal standard Ph₃CH (recrystallized from ethanol⁷) were introduced into a 5-mm NMR tube. To the tube was added a 0.50 mL solution of CH_3I in CD_2Cl_2 with a gastight syringe. The ¹H NMR spectra of samples thermostated at 298 K were taken on the VXR 300 NMR spectrometer using the methine proton of $Ph₃CH$ (5.56 ppm) as the internal reference. A 15-s pulse delay ensured complete relaxation of all the protons. Integrals of peaks at *δ* ∼6.0 (Cp, product), 5.56 (Ph3C*H*), [∼]5.2 (Cp, reactant), 2.15 (free CH3I), and [∼]1.14 (Ir-CH3, product) were obtained from each of the 15-21 spectra per sample recorded over a period of 3 half-lives. The sum of the integrals of all reactants and products was constant throughout each kinetic run. The initial concentrations $[\text{Ir}]_0$ were calculated using eq 6, and the initial concentrations [CH₃I]₀ were calculated using eq 7, where I_{Cp}^{p} = integral

$$
[\text{Ir}]_0 = \frac{(I_{\text{Cp}}{}^{\text{p}} + I_{\text{Cp}}{}^{\text{r}})[\text{Ph}_3\text{CH}]}{5I_S}
$$
 (6)

$$
[MeI]_0 = \frac{(I_{MeI} + I_{Ir-Me})[Ph_3CH]}{3I_S}
$$
 (7)

of product Cp signal, I_{Cp}^r = integral of reactant Cp signal, [Ph₃CH] = concentration of internal standard Ph₃CH, M, I_S = integral of the methine proton of Ph_3CH , I_{MeI} = integral of reactant MeI signal, and I_{Ir-Me} = integral of product Ir-CH₃ signal. The [Ir]₀ and [CH₃I]₀ concentrations in Table 1 are averages of the concentrations obtained from 15-21 spectra taken during the kinetic runs.

The expressions (eqs 8 and 9) used for calculating the pseudo-firstorder rate constant k_{obs} and the second-order rate constant k were derived as described in the Supporting Information. When the ratio $\text{[CH}_3\text{I}]_0$ / $[\text{Ir}]_0 = a$ was greater than 10, eq 8 was used to evaluate k_{obs} .

$$
\ln\left(1 + \frac{I_{\rm Cp}^{\ \ p}}{I_{\rm Cp}}\right) = k_{\rm obs}t\tag{8}
$$

The slope of a plot of $\ln(1 + I_{\text{CP}}^{p}/I_{\text{CP}}^{r})$ vs time is k_{obs} ; and $k = k_{\text{obs}}/I_{\text{CP}}^{p}$ [MeI] $₀$. When *a* was less than 10, eq 9 was used to calculate *k*:</sub>

$$
\ln \left[a + (a-1) \frac{I_{\text{Cp}}^{p}}{I_{\text{Cp}}} \right] = \ln a + (a-1) [\text{Ir}]_0 kt \tag{9}
$$

The second-order rate constant *k* is calculated from the slope of a plot of $\ln[a + (a-1)I_{\text{CP}}P/I_{\text{CP}}P]$ vs time, where the slope is $\{(a-1)[\text{Ir}]_0k\}$.

Kinetic Studies of Cp*Ir(CO)(PR₃) (PR₃ = P(p-C₆H₄CF₃)₃, P(p-C6H4Cl)3) in Reaction 2. The same procedure and amounts of reactants were used as described above for the $CpIr(CO)(PR_3)$ reactions. Integrals of peaks at *δ* ∼1.9 (Cp*, product), 5.56 (Ph3C*H*), ∼1.8 (Cp*, reactant), 2.15 (free CH₃I), and ∼0.7 (Ir–CH₃, product) were obtained from each of the 15-18 spectra recorded over a period of 3 half-lives. The sum of the integrals of all reactants and products was constant throughout each kinetic run. The initial concentrations $[Ir]_0$ were calculated by eq 10, while the initial concentrations $[CH₃I]₀$ were calculated by eq 7

$$
[\text{Ir}]_0 = \frac{(I_{\text{Cp}^*}^p + I_{\text{Cp}^*})(\text{Ph}_3\text{CH})}{15I_8} \tag{10}
$$

using integrations of proton NMR resonances of each species, where $I_{\text{Cp*}}^p$ = integral of product Cp^{*} signal, $I_{\text{Cp*}}^r$ = integral of reactant Cp^{*} signal, and the other terms are the same as in eqs 6 and 7. The $[Ir]_0$ and $[CH₃I]₀$ concentrations in Table 2 are averages of the concentrations obtained from 15-18 spectra. Second-order rate constants *k* were calculated from eq 9, except that I_{Cp^*} values were used instead of I_{Cp} . The reproducibility of rate constants is $\pm 10\%$ or better.

Kinetic Studies of the Reactions (Eq 2) of Cp*Ir(CO)(PR3) (PR3) **PPh3, PPh2Me, PMe3) with CH3I.** Since the rates of reaction of these three compounds were too fast to be measured by 1H NMR spectroscopy, we used the following technique. All the kinetic experiments were carried out at 25.0 ± 0.2 °C in CH₂Cl₂ solvent under argon using a Shimadzu UV-3101PC spectrophotometer equipped with

⁽¹⁸⁾ Bush, R. C.; Angelici, R. J. *Inorg. Chem.* **1988**, *27*, 681.

⁽¹⁹⁾ Eatough, D. J.; Christensen, J. J.; Izatt, R. M. *Experiments in Thermometric and Titration Calorimetry*; Brigham Young University: Provo, UT, 1974.

Table 1. Rates of $CpIr(CO)(PR₃)-CH₃I$ Reactions in $CD₂Cl₂$ at 25.0 °C (Eq 2)

PR ₃	10^3 [Ir] ₀ , ^{<i>a</i>} Μ	10^{3} [CH ₃ I] ₀ , ^b Μ	$a^{\rm c}$	10^4k_{obs} , ^d s^{-1}	$10^{2}k^{e}$ $M^{-1} s^{-1}$
$P(p-C_6H_4CF_3)_3$	67	350	5.2		0.15
	21	320	15	4.3	0.13
	6.9 6.9	110 160	16 23	1.6 2.4	0.15 0.15
$P(p-C6H4Cl)3$	2.4	58	25	3.7	0.62
	2.6	67	25	4.2	0.63
	2.8 2.5	120 180	40 60	7.6 11	0.61 0.61
$P(p-C_6H_4F)_3$	4.2	74	18	8.0	1.10
	2.6	51	20	6.2	1.22
	1.6 0.54	65 52	40 100	8.1 7.3	1.24 1.35
PPh_3	4.1	36	8.7		2.7
	3.1	37	12	12	3.3
	2.3 2.7	39 53	15 20	11 15	2.8 2.9
	3.3	104	30	30	2.9
$P(p-C_6H_4Me)_3$	31 5.2	50	1.6		6.9
	1.2	54 29	10 25	36 20	6.7 6.9
	2.0	54	27	38	6.9
	2.2 2.4	66 91	30 38	45 62	6.8 6.8
$P(p-C6H4OMe)3$	4.9	43	8.8		7.3
	6.3 8.7	56 82	8.9 9.4		6.7 6.9
	4.4	72	16	50	7.0
PPh ₂ Me	8.4	7.0	0.8		11
	8.0 4.2	8.8 22	1.1 5.1		9.7 10
	2.5	38	15	38	10
	2.5 3.3	41 57	17 18	29 53	9.4 9.4
PMe_2Ph	5.8	4.7	0.8		24
	7.6	6.7 8.6	0.9		21
	9.6 9.2	8.3	0.9 0.9		18 20
	11	9.7	0.9		18
PMe ₃	5.4 7.4	9.5 8.0	1.8 1.1		21 46
	6.9	7.9	1.2		43
	5.7 3.6	7.9 12.8	1.4 3.5		43 42
PEt_3	8.3	41	4.9		15
	4.9	54	11	67	12
	3.5 3.9	39 48	11 12	78 118	20 25
PCy ₃	30	83	2.8		0.82
	7.4 12	25 114	3.4 9.6	8.0	0.86 0.78
	9.8	150	15	12	0.78

^a Average concentrations using eq 6. *^b* Average concentrations using eq 7. *c* Ratio of [MeI]₀/[Ir]₀. *d* Calculated using eq 8. *e* Calculated from *k*obs or using eq 9.

an internal timer and a thermostated cell holder. The rates of reaction were monitored directly by following the disappearance of the band at 312 nm for the Cp*Ir(CO)(PR3) complexes. Since the ratio [CH3I]0/ $[\text{Ir}]_0$ was greater than 10, the absorbance (A) —time data were fitted to the pseudo-first-order equation (11) by use of the program Spectracalc

$$
A_t = A_\infty + (A_0 - A_\infty) \exp(-k_{\text{obs}}t) \tag{11}
$$

or GraFit in order to obtain k_{obs} values.²⁰ The k values were calculated from the expression $k = k_{\text{obs}}/[\text{MeI}]_0$.

(20) Wang, W.-D.; Bakac, A.; Espenson, J. H. *Inorg. Chem.* **1993**, *32*, 5034.

Table 2. Rates of $Cp*Ir(CO)(PR_3)$ - CH_3I Reactions at 25.0 °C (Eq 2)

	10^3 [Ir] ₀ , ^{<i>a</i>}	10^{3} [CH ₃ I] ₀ , ^b		$10^3 k_{\text{obs}}$, ^d	k^e
PR ₃	M	М	$a^{\rm c}$	s^{-1}	M^{-1} s ⁻¹
$P(p-C_6H_4CF_3)$ ₃ f	24.1 17.5 11.2 7.2	37.7 28.9 27.5 35.0	1.56 1.65 2.46 4.88		0.048 0.051 0.047 0.046
$P(p-C_6H_4Cl)3$	33.5 15.9 14.7 23.7	23.4 22.2 23.0 47.0	0.70 1.39 1.57 1.98		0.120 0.123 0.112 0.123
PPh_3 ^g	0.10 0.10 0.10 0.13 0.13 0.13 0.13	1.07 1.60 2.14 2.67 3.73 4.80 5.87	11 16 21 21 29 37 45	1.62 2.19 3.39 3.98 5.70 6.76 8.63	1.51 1.37 1.58 1.49 1.53 1.41 1.47
PPh_2Me^g	0.10 0.10 0.10 0.10 0.10 0.10	2.12 3.20 4.27 5.33 6.40 7.47	21 32 43 53 64 75	8.24 10.6 13.6 17.6 20.8 24.6	3.89 3.33 3.19 3.30 3.25 3.29
PMe ₃ ^g	0.10 0.10 0.10 0.10 0.10 0.10	1.06 1.60 2.12 2.67 3.20 3.73	11 16 21 27 32 37	2.83 4.30 5.32 6.60 8.20 9.00	26.7 26.8 25.1 24.7 25.6 24.1

^a Average concentrations using eq 10. *^b* Average concentrations using eq 7. *c* Ratio of [MeI]₀/[Ir]₀. *d* Calculated using eq 11. *e* Calculated from k_{obs} or using eq 9. *f* Reaction rate monitored by ¹H NMR in CD₂Cl₂. *^g* Reaction rate monitored by UV-vis spectroscopy at 312 nm in $CH₂Cl₂$.

Results

Syntheses of Iridium Complexes 1-**11.** In spite of known syntheses for CpM(CO)(PR₃) (M = Co, Rh) complexes²¹ and $(C_5H_4R)Ir(CO)(PPh_3)$ ($R = COCH_3$, CH_3 , $C(O)C_6H_5$, CHO),²² only the preparations of complexes **2, 4,** and **7**-**9** have been reported previously using different synthetic routes often in relatively low yields.^{9,12} We developed a general method (eqs 4 and 5) to synthesize all of the $CpIr(CO)(PR_3)$ complexes, except 11, from KCp and *trans*-IrCl(CO)(PR_3)₂. The reported synthetic procedure for the preparation of "Vaska's complex" ²³ *trans*-IrCl(CO)(PPh₃)₂ involves refluxing IrCl₃ and PPh₃ in *N*,*N*dimethylformamide.11 The preparation of other *trans*-IrCl(CO)- $(PR₃)₂$ complexes where PR₃ is a phosphine other than PPh₃, however, cannot be accomplished by this method. Although other methods^{24,25} have been reported in the literature, most of them require many steps and give low overall yields, as for *trans*-IrCl(CO)(PEt3)2. 24a We developed a simple, reliable method (eq 4) for the preparation of the *trans*-IrCl(CO)(PR₃)₂ complexes which are used *in situ* to make the final products **1**-**10** (eq 5). While this work was in progress, Rahim and

- (22) Blais, M. S.; Rausch, M. D. *Organometallics* **1994**, *13*, 3557.
- (23) Vaska, L. *Acc. Chem. Res.* **1968**, *1*, 335.
- (24) (a) Yoneda, G.; Lin, S.-M.; Wang, L.-P.; Blake, D. M. *J. Am. Chem. Soc.* **1981**, *103*, 5768. (b) Rappoli, B. J.; Janik, T. S.; Churchill, M. R.; Thompson, J. S.; Atwood, J. D. *Organometallics* **1988**, *7*, 1939. (c) Thompson, J. S.; Atwood, J. D. *J. Am. Chem. Soc.* **1991**, *113*, 7429. (d) Collman, J. P.; Kang, J. W. *J. Am. Chem. Soc.* **1967**, *89*, 844.
- (25) The use of cis -IrCl(CO)₂(p -NH₂C₆H₄CH₃) in synthesizing *trans*-IrCl- $(CO)(PR₃)₂$ complexes, where $R = C₆H₁₁$ and OPh, was reported by: Hieber, W.; Frey, V. *Chem. Ber.* **1966**, *99*, 2607.

^{(21) (}a) Werner, H. *Angew. Chem., Int. Ed. Engl.* **1983**, *22*, 927. (b) Bitterwolf, T. E. *Inorg. Chim. Acta* **1986**, *122*, 175.

Ahmed26 reported the synthesis of some of the *trans*-IrCl(CO)- $(PR₃)₂$ complexes by essentially the same method. The starting complex cis -IrCl(CO)₂(p -NH₂C₆H₄CH₃)²⁵ is available from IrCl3'*x*H2O in high yield in a "one-pot" reaction,8 and the *trans*-IrCl(CO)(PR_3)₂ complexes are produced in high yield. The subsequent reaction (eq 5) of *trans*-IrCl(CO)(PR_3)₂ with KCp gave the $CpIr(CO)(PR₃)$ complexes in overall isolated yields of 40-73%. When the phosphine is tricyclohexylphosphine, $trans-IrCl(CO)(PCy₃)₂$ does not react with KCp in refluxing toluene to give **11**, presumably because of the bulky PCy3 ligands. However, complex **11** was synthesized (eqs 12 and 13) in 40% yield by reacting PCy_3 with CpIr(CO)₂, which was prepared *in situ* from the reaction of *cis*-IrCl(CO)₂(*p*-NH₂C₆H₄-CH₃) with KC_p.
 cis-IrCl(CO)₂(*p*-NH₂C₆H₄CH₃) + KC_p¹ toluene</sup> $CH₃$) with KCp.

reflux CpIr(CO)2 (12) CpIr(CO)2 ⁺ PCy398 decane

$$
Cplr(CO)2 + PCy3 \frac{\text{decare}}{\text{reflux}} \cdot Cplr(CO)(PCy3)
$$
 (13)

Complexes **1**-**11** have the half-sandwich geometry shown in eq 1 as confirmed for **4** by an X-ray crystallographic determination.27 Only compounds **9**-**11** are air-sensitive in the solid state. As a precaution, all compounds were stored under N₂, and solutions were prepared using dry deaerated solvents.

Syntheses of Iridium Complexes 12-**16.** The complexes $Cp*Ir(CO)(PR_3)$ (PR₃ = PEt₃, P(OMe)₃, P(O-*i*-Pr)₃) were previously prepared by refluxing $Cp*Ir(CO)_2$ with the phosphine or phosphite in toluene.16 However, of the phosphines used in the present study, only $PMe₃$ gave the product (16) under these conditions. For all of the other phosphines, it was necessary
to use the higher boiling solvent decane (bp 174 °C) (eq 14).
 $Cp^*Ir(CO)_2 + PR_3 \frac{decare}{reflux} Cp^*Ir(CO)(PR_3)$ (14) to use the higher boiling solvent decane (bp 174 °C) (eq 14).

$$
Cp*Ir(CO)2 + PR3 \xrightarrow{\text{decay}} Cp*Ir(CO)(PR3)
$$
 (14)

PR₃ in product:
$$
P(p-C_6H_4CF_3)_3
$$
,
12, 75%; $P(p-C_6H_4Cl)_3$, 13, 83%; PPh_3 ,
14, 90%; PPh_2Me , 15, 78%; PMe_3 , 16, 75%

Complexes **12**-**16** have the half-sandwich geometry shown in eq 1. This was confirmed for **13** by an X-ray crystallographic determination;28 its structure is similar to that of CpIr(CO)- $(PPh₃)²⁷$ All of compounds $12-16$ are air-sensitive in the solid state, so they were stored under N_2 and solutions were prepared using dry deaerated solvents.

Characterization of Products in Reactions 1 and 2. Quantitative formation of the three-legged piano-stool complexes $1H^{+}CF_{3}SO_{3}^{-}$ – $16H^{+}CF_{3}SO_{3}^{-}$ occurs upon addition of 1 equiv of CF_3SO_3H to the neutral complexes $1-16$ (eq 1), as evidenced by 1H NMR and IR spectroscopy. The Ir-H resonances in the ¹H NMR spectra occur as doublets between -14.05 and -15.32 ppm with $2J_{\text{PH}} = 24-29$ Hz due to coupling with the phosphine phosphorus atom. Protonation causes the Cp proton resonances to shift [∼]0.8 ppm downfield; the *^ν*(CO) bands move [∼]140 cm-¹ to higher frequency. The IR and ${}^{1}H$ NMR spectra of these complexes are very similar to those of $2H^+$, $4H^+$, and $7-9H^+$,

- (27) Bennett, M. J.; Pratt, J. L.; Tuggle, R. M. *Inorg. Chem.* **1974**, *13*, 2408.
- (28) Thomas, L. M.; Wang, D.; Angelici, R. J.; Jacobson, R. A. To be published.

Table 3. Heats of Protonation and Rate Constants for CpIr(CO)(PR3) Complexes

PR ₃	cone angle θ ^a deg	$-\Delta H_{\rm HM}$, ^{c,d} kcal/mol	$-\Delta H_{HP}^{\quad b}$ kcal/mol	$10^{2}k^{e}$ $M^{-1} s^{-1}$
$P(p-C_6H_4CF_3)_3$ (1)	145	28.0(2)	13.6(2)	0.15(1)
$P(p-C_6H_4Cl)_3$ (2)	145	$29.2(2)$ f	17.9(2)	0.62(1)
$P(p-C_6H_4F)_3$ (3)	145	29.8(2)	19.6(2)	1.23(7)
PP $h_3(4)$	145	$30.0(1)$ ^h	21.2(1)	2.9(2)
$P(p-C_6H_4CH_3)_3$ (5)	145	31.1(3)	23.2(3)	6.8(1)
$P(p-C_6H_4OCH_3)$ ₃ (6)	145	31.2(2)	24.1(2)	7.0(2)
PPh ₂ Me(7)	136	31.5(1)	24.7(2)	10.0(4)
PPh $Me2$ (8)	122	32.5(2)	28.4(2)	20(2)
PMe ₃ (9)	118	$33.2(3)$ f	31.6(2)	44(2)
$PEt_3(10)$	132 ^g	32.9(2)	33.7(3)	18(4)
$PCy_3(11)$	170	32.7(2)	33.2(4)	0.81(3)

^a Reference 30a. *^b* Reference 3, eq 3. *^c* For protonation with 0.1 M CF3SO3H in DCE solvent at 25.0 °C, eq 1. *^d* Numbers in parentheses are average deviations from the mean of at least four titrations. *^e* Average of values in Table 1; numbers in parentheses are average deviations from the mean. *^f* From ref 9. *^g* Other values in the literature are 137^{30b} and $166.^{30g,h}$ *h* 30.1 \pm 0.2 kcal/mol in ref 9.

Table 4. Heats of Protonation of Cp*Ir(CO)(PR₃) Complexes (ΔH_{HM}) and Phosphines (ΔH_{HP})

compound	$-\Delta H_{\rm HM}$, ^{a,b} kcal/mol	$-\Delta H_{HP}^{a,b}$ kcal/mol
$Cp*Ir(CO)[P(p-C6H4CF3)3], 12$ $Cp*Ir(CO)[P(p-C6H4Cl)3],$ 13 $Cp*Ir(CO)(PPh_3)$, 14 $Cp*Ir(CO)(PPh2Me)$, 15 $Cp*Ir(CO)(PMe3), 16$ $P(2-C_6H_4OMe)$ ₃ , 17 $P[2,6-C6H3(OMe)2]$ ₃ , 18 $P(2,4,6-C6H2Me3)$ ₃ , 20	33.8(2) 36.9(2) 37.1(2) 37.1(3) 38.0(2)	$13.6(2)^c$ $17.9(2)^c$ $21.2(1)^c$ $24.7(0)^c$ $31.6(2)^c$ 25.5(2) 33.8(2) 29.4(2)

a For protonation with 0.1 M CF₃SO₃H in DCE solvent at 25.0 °C. *b* Numbers in parentheses are average deviations. ^{*c*} ∆*H*_{HP} for eq 3 of free PR3; see ref 18.

which have been previously reported.⁹ The protonated complexes are air-sensitive in solution. Complexes $4H^+CF_3SO_3^-$, $5H^+CF_3SO_3^-$, and $14H^+CF_3SO_3^-$ were isolated as white solids from reactions of **4**, **5**, and **14** with CF_3SO_3H in Et₂O.

As established previously¹² for the reaction of CpIr(CO)-(PPh₃), all of the Cp[']Ir(CO)(PR₃) complexes $(1-16)$ in this study react (eq 2) with $CH₃I$ in $CD₂Cl₂$ to give the methyl complexes $1CH_3^+$ $-16CH_3^+$ quantitatively, as observed by ¹H NMR spectroscopy. The Ir $-CH_3$ ¹H NMR resonances for these compounds occur as doublets between 1.18 and 0.61 ppm with $^{2}J_{\text{PH}}$ = 3-6 Hz due to coupling with the phosphine phosphorus atom. The Cp proton signals are ∼0.8 ppm downfield of those in the starting complexes (1–11). The *v*(CO) bands move \sim 130 cm^{-1} to higher frequency upon methylation of the Ir, as expected for the formation of a cationic complex. The somewhat higher (∼10 cm-1) *^ν*(CO) values for Cp′Ir(CO)(PR3)(H)⁺ than Cp′Ir- $(CO)(PR₃)(CH₃)⁺$ indicate that the H⁺ ligand is more electronwithdrawing than CH_3^+ . The IR and ¹H NMR spectra of these complexes are similar to those of **4CH3** ⁺, which was characterized previously.¹² Complexes $4CH_3^+$, $9CH_3^+$, $13CH_3^+$, and $14\overrightarrow{CH}_3$ ⁺ were isolated as white solids.

Calorimetric Studies. The heats of protonation (ΔH_{HM}) determined by calorimetric titration of the $Cp'Ir(CO)(PR₃)$ complexes with 0.1 M CF₃SO₃H in 1,2-dichloroethane (DCE) at 25.0 °C according to eq 1 are presented in Tables 3 and 4. Table 3 includes data for compounds **2**, **4**, and **7**-**9**, which were reported earlier.9 Plots of temperature vs amount of acid added were linear, indicating that the protonations occur rapidly and stoichiometrically.19 Except for compounds **15** and **16**, there was no decomposition of either the neutral or protonated species during the titration as evidenced by the normal pre- and

⁽²⁶⁾ Rahim, M.; Ahmed, K. J. *Inorg. Chem.* **1994**, *33*, 3003.

Figure 1. Plots of k_{obs} vs $[CH_3I]_0$ for reactions of $Cp*Ir(CO)(PR_3)$ with CH₃I at 25 °C in CD₂Cl₂ (eq 2).

Figure 2. Correlation (eq 15) of metal basicity ($-\Delta H_{\text{HM}}$, eq 1) for CpIr(CO)(PR₃) with phosphine basicity ($-\Delta H_{HP}$, eq 3).

post-titration curves. For **15** and **16**, the increase in baseline slope was only ∼5% of the titration slope, indicating that the heat contributed by decomposition is small and the effect on the ∆*H*_{HM} values is probably within the experimental error. Infrared spectra of the titrated solutions showed *ν*(CO) bands characteristic of the protonated products $1H^+ - 16H^+$. The ΔH_{HM} value for 4 (30.0 \pm 0.1 kcal/mol) agrees well with the literature value of $(30.1 \pm 0.2)^9$

The heats of protonation (ΔH_{HP}) of the phosphines 17, 18, and **20** according to eq 3 are also presented in Table 4. The titration of phosphine **19** was unsuccessful due to its reaction with the DCE solvent, as was evident from the release of heat before the acid titration began. The product of this reaction was probably $\{ (CICH_2CH_2)P[2,4,6-C_6H_2(OMe)_3]_3\}^+Cl^-$.

Kinetic Studies. Rate studies showed that the reactions (eq 2) of complexes $1-16$ with CH₃I obeyed the following rate law: rate $= k[Cp'Ir(CO)(PR₃)][CH₃I]$. For reactions in which a 10-fold excess of CH3I was used, plots (Figure 1) of pseudofirst-order rate constants k_{obs} vs $[CH₃I]₀$ gave straight lines with near-zero intercepts. The observed rate constants (k_{obs}) and the second-order rate constants $(k = k_{obs}/[\text{MeI}]_0)$ are listed in Tables 1 and 2; average *k* values are collected in Tables 3 and 5. For reactions which are not run under pseudo-first order conditions, only the *k* values are obtained (eq 9) and listed in Tables 1 and 2. The values of *k* (Tables 1 and 2) in the four to six runs for each complex are within 10% of the average value listed in

Tables 3 and 5. The rates of the reactions were not noticeably affected by wrapping the flasks in aluminum foil. The *k* for **4** $((2.9 \pm 0.2) \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1})$ agrees well with the literature value ((2.5 \pm 0.2) × 10⁻² M⁻¹ s⁻¹), which was determined in CH2Cl2 at 25 °C by monitoring the disappearance of the *ν*(CO) band of the starting material.¹²

Discussion

Basicities of CpIr(CO)(PR₃) Complexes $1-11$ **.** As has been noted in previous studies of basicities (ΔH_{HM} or pK_a)^{1,3} of transition metal complexes, increasing the basicities of the ligands bound to a metal increases the basicity of the metal. In the CpIr(CO)(PR₃) series of complexes, we use Δ*H*_{HP} for the protonation of the free phosphine (eq 3) as the measure of the phosphine basicity. Earlier⁹ we reported a correlation ($-\Delta H_{\text{HM}}$) $= 23.9 - 0.298\Delta H_{HP}$) between the basicities of the phosphine ligands and the basicities of five CpIr(CO)(PR3) complexes (**2**, **4**, **7**-**9**). In this study, we add four additional compounds to the correlation (Figure 2). For all nine compounds $(1-9)$, the correlation (eq 15) is the same within experimental error as that obtained previously.

$$
-\Delta H_{\text{HM}} = (23.9 \pm 0.2) + (0.30 \pm 0.01)(-\Delta H_{\text{HP}}),
$$

$$
r = 0.996 (15)
$$

The basicities of the phosphines extend over a wide range from the weakly basic P(p -C₆H₄CF₃)₃ ($-\Delta H_{HP} = 13.6$ kcal/ mol) to the very basic PEt₃ ($-\Delta H_{HP} = 33.7$ kcal/mol).³ However, the $-\Delta H_{HM}$ values only range from 28.0 kcal/mol for CpIr(CO) $[P(p-C_6H_4CF_3)_3]$ (1) to 33.2 kcal/mol for CpIr-(CO)(PMe3) (**9**). The relatively small change in metal basicity with a much larger change in phosphine basicity is reflected in the 0.30 coefficient for the $-\Delta H_{HP}$ term in eq 15; this coefficient shows that a 1.0 kcal/mol change in phosphine basicity results in only a 0.30 kcal/mol change in metal basicity. Possible reasons for this insensitivity of metal basicity to phosphine ligand basicity were discussed earlier.29

Two compounds, CpIr(CO)(PEt3) (**10**) and CpIr(CO)(PCy3) (**11**), were not included in the correlation (eq 15) because they appear to deviate significantly from it (Figure 2). Both of these complexes are less basic by about $1.1-1.2$ kcal/mol than expected on the basis of their PR_3 basicity. The bulky PCy_3 ligand (cone angle 170°)³⁰ might especially be expected to reduce the basicity of CpIr(CO)(PCy3) due to steric crowding in the more highly coordinated $CpIr(CO)(PCy₃)(H)⁺$ product (eq 1), which would make protonation less favorable. The $PEt₃$ ligand in 10 is not as large as PCy_3 in 11 , yet the cone angle for PEt₃ is variously reported to be $132,30a$ 137, $30b$ and 166°. $30g$, h The smaller-than-expected $-\Delta H_{HM}$ value for 10 suggests that PEt₃ does induce a steric effect which is consistent with the largest cone angle (166°) .^{30g,h}

Basicities of Cp*Ir(CO)(PR3) Complexes 12-**16.** In the Cp^{*}Ir(CO)(PR₃) series of complexes, the basicities ($-\Delta H_{HM}$, eq 1) of the complexes generally increase with the basicities of the phosphine ligands (Table 4): $P(p-C_6H_4CF_3)$ (33.8 kcal/ mol) < $P(p-C_6H_4Cl)_3$ (36.9) < PPh_3 , PPh_2Me (37.1) < PMe_3 (38.0). However, unlike the case of the CpIr(CO)(PR_3)

⁽²⁹⁾ Rottink, M. K.; Angelici, R. J. *J. Am. Chem. Soc.* **1993**, *115*, 7267. (30) (a) Tolman, C. A. *Chem. Re*V*.* **1977**, *77*, 313. (b) Stahl, L.; Ernst, R. D. *J. Am. Chem. Soc.* **1987**, *109*, 5673. (c) Seligson, A. L.; Trogler, W. C. *J. Am. Chem. Soc.* **1991**, *113*, 2520. (d) Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. *Organometallics* **1990**, *9*, 1758. (e) Brown, T. L. *Inorg. Chem.* **1992**, *31*, 1286. (f) Woska, D. C.; Bartholomew, J.; Greene, J. E.; Eriks, K.; Prock, A.; Giering, W. P. *Organometallics* **1993**, *12*, 304. (g) White, D.; Coville, N. J. *Ad*V*. Organomet. Chem.* **1994**, *36*, 95. (h) de Santo, J. T.; Mosbo, J. A.; Storhoff, B.-N.; Bock, P. L.; Bloss, R. E. *Inorg. Chem.* **1980**, *19*, 3086.

Table 5. Comparison of ΔH_{HM} ^{*a*} and k^b Values for Cp*Ir(CO)(PR₃) and CpIr(CO)(PR3) Complexes

	Cp^*		Cp^d	$\Delta H(Cp^*)$ – $\Delta H(\dot{Cp})$: ^{c,d}	
PR ₃	$-\Delta H_{\rm HM}$	k	$-\Delta H_{\rm HM}$	10 ² k	$\Delta\Delta H_{\rm HM}$
$P(p-C_6H_4CF_3)$	33.8	0.048	28.0	0.15	5.8
$P(p-C6H4Cl)3$	36.9	0.120	29.2	0.62	7.7
PPh ₃	37.1	1.44	30.0	2.9	7.1
PPh ₂ Me	37.1	3.11	31.5	10	5.6
PMe ₃	38.0	23.4	33.2	44	4.8

 $a - \Delta H_{HM}$ in kcal/mol. *b k* in M⁻¹ s⁻¹. *c* For Cp*Ir(CO)(PR₃). *d* For $CpIr(CO)(PR₃).$

complexes, there is a poor correlation between ∆*H*_{HM} and ∆*H*_{HP} resulting from the very similar $ΔH_{HM}$ values for the complexes $(13-15)$ with the P(p-C₆H₄Cl)₃ (36.9 kcal/mol), PPh₃ (37.1 kcal/ mol), and PPh₂Me (37.1 kcal/mol) ligands, respectively. The ΔH_{HM} values for these compounds have been measured many times with up to four different acid concentrations, each standardized independently. In all cases, the Δ*H*_{HM} values are reproducible within our normal error limits $(\pm 0.2 \text{ or } 0.3)$. We do not understand why the ∆*H*_{HM} values do not correlate with ∆*H*HP, especially because excellent correlations are observed for $CpIr(CO)(PR₃)$ and for other series of phosphine complexes Fe(CO)₃(PR₃)₂,⁹ W(CO)₃(PR₃)₃,³¹ and CpOs(PR₃)₂Br.²⁹

The availability of $-\Delta H_{HM}$ for Cp^{*}Ir(CO)(PPh₃) (37.1 kcal/ mol) allows one to determine the effect on Ir basicity of replacing a CO ligand in $Cp*Ir(CO)_2$ (21.4 kcal/mol)⁹ by PPh₃. The large increase in $-\Delta H_{HM}$ by 15.7 kcal/mol indicates that the equilibrium constant for protonation of $Cp*Ir(CO)(PPh_3)$ is 3.5×10^{11} larger than that for Cp*Ir(CO)₂; this estimate $[\Delta \Delta H_{HM} = \Delta \Delta G = -RT \ln(K_2/K_1)]$ assumes that ΔS is the same for the protonation of both complexes.³ The ΔΔH_{HM} difference (15.7 kcal/mol) confirms an earlier indirect estimate (14.4 kcal/mol) for the difference in basicities between Cp′Ir- $(CO)(PPh_3)$ and $Cp'Ir(CO)_2$ complexes.⁹ The effect of replacing a CO ligand by a phosphine on metal basicity has also been observed in pK_a values for the following pairs of compounds determined in MeCN: $HCo(CO)₄$ (8.4) vs $HCo(CO)₃(PPh₃)$ (15.4) ,^{32b} HMn(CO)₅ (14.2) vs HMn(CO)₄(PPh₃) (20.4),^{32a} $CpW(CO)_{3}H (16.1)^{32c}$ vs $CpW(CO)_{2}(PMe_{3})H (26.6),^{32b}$ CpCr- $(CO)_{3}H$ (13.3)^{32c} vs CpCr(CO)₂(PPh₃)H (21.8),^{2d} and CpW- $(CO)_{3}H^{*+}(-3.3)$ vs CpW $(CO)_{2}(PMe_{3})H^{*+}$ (5.1).³⁴ It is evident, however, from these data that substitution of CO by $PR₃$ does not cause the same magnitude of increase in metal basicity in all metal complexes.

Effects of Cp* and Cp on Metal Basicity (ΔH_{HM} **) in Cp[′]Ir-** $(CO)(PR₃)$. In order to understand the effects of Cp^* and Cp on the basicities of the $CpIr(CO)(PR_3)$ complexes, we examined differences (∆∆*H*HM in Table 5) between ∆*H*HM values for $Cp*Ir(CO)(PR_3)$ and the $CpIr(CO)(PR_3)$ analogs. The values of ∆∆*H*_{HM} range from 4.8 to 7.7 kcal/mol following no obvious trend. The average value (6.2 kcal/mol) is similar to that (5.7 kcal/mol) for the Cp'Ir(COD) compounds,¹⁰ where Cp' is Cp^{*} or Cp. Other $ΔΔH_{HM}$ values for Cp^{*} vs Cp complexes are $Cp'Ru(PMe₃)₂Cl$ (9.0 kcal/mol)²⁹ and $Cp'Ru(PPh₃)₂H$ (5.5 kcal/ mol).²⁹ This effect of the Cp' ligand on metal basicity has also been found in pK_a values for the following pairs of compounds

- (31) Sowa, J. R., Jr.; Zanotti, V.; Angelici, R. J. *Inorg. Chem.* **1993**, *32*, 848.
- (32) (a) Kristjánsdóttir, S. S.; Moody, A. E.; Weberg, R. T.; Norton, J. R. *Organometallics* **1988**, *7*, 1983. (b) Moore, E. J.; Sullivan, J. M.; Norton, J. R. *J. Am. Chem. Soc.* **1986**, *108*, 2257. (c) Jordan, R. F.; Norton, J. R. *J. Am. Chem. Soc.* **1982**, *104*, 1255.
- (33) Parker, V. D. *J. Am. Chem. Soc.* **1992**, *114*, 7458.
- (34) (a) Ryan, O. B.; Tilset, M.; Parker, V. D. *J. Am. Chem. Soc.* **1990**, *112*, 2618. (b) Wayner, D. D. M.; Parker, V. D. *Acc. Chem. Res.* **1993**,

Figure 3. Correlation (eq 16) of rate constants (log *k* for eq 2) with metal basicity ($-\Delta H$ _{HM} for eq 1) for CpIr(CO)(PR₃) at 25.0 °C.

determined in MeCN: $Cp*Mo(CO)_{3}H (17.1)^{32b}$ vs $CpMo (CO)_{3}H$ (13.9),^{32c} Cp*Fe(CO)₂H (26.3) vs CpFe(CO)₂H (19.4),^{32b} $Cp^*Cr(CO)_3H (16.1)^{2e}$ vs $CpCr(CO)_3H (13.3),^{32c}$ and $Cp^*Mo (CO)_{3}H^{\bullet+}$ (-2.5) vs CpMo(CO)₃H^{$\bullet+$} (-6.0).³⁴ Thus, the basicity enhancement caused by the replacement of Cp by Cp* depends on the metal and the ligands in the complex.

Rates of Reaction of CpIr(CO)(PR3) with MeI (Eq 2). All of the compounds $1-16$ react (eq 2) with CH₃I by a secondorder rate law: rate $= k [Cp'Ir(CO)(PR₃)][CH₃I]$. The same rate law was observed¹² in a more limited study of the reaction of $CpIr(CO)(PPh₃)$ with $CH₃I$. This rate law suggests that the mechanism of reaction is one that involves nucleophilic attack of the iridium in the complex on the carbon of CH3I, which results in displacement of I^- and formation of the $[Cp'Ir(CO)$ - $(PR_3)(CH_3)$ ⁺I⁻ product. Since the nucleophilicity of the Ir is expected to depend on the electron richness of the metal and the basicity (ΔH_{HM} , eq 1) of the metal also reflects electron richness at the metal center, one might expect a correlation between the rate constant (*k*) for the reaction in eq 2 and the basicity (ΔH_{HM}, eq 1). Indeed, for CpIr(CO)(PR₃) complexes **1−9**, there is an excellent correlation between log *k* and - ΔH_{HM} (Figure 3 and eq 16). Changing the basicity ($-\Delta H_{HM}$) of CpIr-

$$
\log k = (-15.8 \pm 0.8) + (0.47 \pm 0.03)(-\Delta H_{HM}),
$$

$$
r = 0.993 (16)
$$

(CO)(PR₃) from 28.0 kcal/mol for **1** (PR₃ = P(p -C₆H₄CF₃)₃) to 33.2 kcal/mol for 9 (PR_3 = PMe_3) increases the rate of reaction 2 by approximately 300-fold.

Again the PEt3 and PCy3 complexes (**10** and **11**) are not included in the correlation (eq 16). The PEt_3 complex (10) appears to deviate only slightly from the line (Figure 3). However, the rate for the PCy₃ complex (11) is approximately 46 times slower than is predicted from eq 16. This large reduction in iridium nucleophilicity is almost certainly due to the bulkiness of the PCy₃ ligand. The effects of PCy₃ and other bulky phosphines on rates of CO substitution in $CpRh(CO)₂$ complexes by PR3 nucleophiles were reported earlier by Basolo and co-workers.35 The rates of these reactions were also dramatically slower for the bulky phosphines.

Graham and co-workers¹² previously reported a related kinetic study of the reaction of $CpCo(CO)(PR₃)$ with $CH₃I$ to give

²⁶, 287. (35) Schuster-Woldan, H. G.; Basolo, F. *J. Am. Chem. Soc.* **1966**, *88*, 1657.

Figure 4. Correlation between log k_{Ir} for CpIr(CO)(PR₃) and log k_{Co} for $CpCo(CO)(PR₃)$ for their reactions with $CH₃I$ in $CH₂Cl₂$ at 25.0 $^{\circ}$ C (eq 2).

 $[CpCo(CO)(PR₃)(CH₃)]⁺I⁻$ in CH₂Cl₂ at 25.0 °C. The secondorder rate constants decreased with the PR_3 ligand, $PPhMe₂$ (3.0) \times 10⁻² M⁻¹ s⁻¹) > PPh₂Me (1.5 \times 10⁻² M⁻¹ s⁻¹) > PPh₃ $(0.26 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1})$ > PCy₃ $(0.055 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1})$, in the same order as observed in our $CpIr(CO)(PR₃)$ series. These data also demonstrate the unusually poor nucleophilicity of the PCy3 complex which reacts more slowly than any of the other $CpCo(CO)(PR₃)$ complexes. In fact, the steric effect of bulky ligands is greater for the Co complexes than for the Ir complexes; this may be seen in the ratio $(k_{\text{Ir}}/k_{\text{Co}})$ of rate constants k for the CpM(CO)(PR₃) complexes which increase with the bulkiness of the ligand: PPhMe₂ (6.6) ∼ PPh₂Me (6.6) < PPh₃ (11) < PCy₃ (15). With the least bulky phosphines, the Ir complex reacts 6.6 times faster than the Co. However, as the bulkiness of the phosphine increases, the rate decreases more for the Co complexes than for the Ir. In fact, there is linear correlation (log k_{Ir} = (0.47 \pm 0.06) + (0.78 \pm 0.03) log k_{Co} , *r* $= 0.999$, Figure 4) between log k_{Ir} for CpIr(CO)(PR₃) and log k_{Co} for CpCo(CO)(PR₃). The slope (0.78), which is less than 1.0, in this correlation reflects the greater effect of bulky PR_3 ligands on the nucleophilicity of the smaller Co as compared with Ir.

In contrast to the excellent correlation (eq 16) between log *k* and $-\Delta H_{HM}$ for the CpIr(CO)(PR₃) complexes, there is only a poor correlation (Table 5) between these parameters for the $Cp*Ir(CO)(PR₃)$ complexes. This is probably related to the unexpectedly similar ∆*H*_{HM} values for these complexes, as discussed above.

Effects of Cp* and Cp on Rate Constants for the Reaction (Eq 2) of Cp′**Ir(CO)(PR3) with CH3I.** In order to understand the effects of Cp* and Cp on the nucleophilicities of the Cp′Ir- (CO)(PR3) complexes, we plot (Figure 5) log *k* values (Table 5) versus the basicities ($-\Delta H_{HP}$) of the PR₃ ligands in the complexes. These correlations (eqs 17 and 18) show that the

$$
\log k = (-3.4 \pm 0.4) + (0.16 \pm 0.02)(-\Delta H_{\rm HP}), \quad r = 0.99
$$

for Cp*Ir(CO)(PR₃) (17)

 $\log k = (-4.6 \pm 0.3) + (0.14 \pm 0.01)(-\Delta H_{HP}),$ $r = 0.99$ for $CpIr(CO)(PR₃)$ (18)

metal becomes more nucleophilic as its $PR₃$ ligand becomes more basic. Within experimental error, the slopes, i.e., the coefficients for the $-\Delta H_{HP}$ terms in eqs 17 and 18, are the same for both the Cp^* and Cp complexes. Thus, for all $Cp'Ir(CO)$ -

Figure 5. Plots of log *k* for eq 2 vs - ΔH_{HP} for PR₃ (eq 3), showing a comparison of the effects of Cp* and Cp ligands on the nucleophilicities of Cp′Ir(CO)(PR3) complexes.

 $(PR₃)$ pairs of complexes, the rate constant for the reaction of the Cp* complex is approximately 40 times larger than that for the analogous Cp complex. This presumably reflects the greater electron-donating ability of the Cp* ligand, as was also noted in the ΔH_{HM} values above.

In order to determine if the Cp* ligand exerts a steric effect in addition to its electronic effect, we compare the nucleophilicities (log *k*) of the Cp* and Cp compounds in relation to their basicities ($-\Delta H_{HM}$). One might assume that the correlation in eq 16 (Figure 3) for the $CpIr(CO)(PR₃)$ compounds would predict the value of k for the $Cp*Ir(CO)(PR_3)$ complexes if the Cp* ligand does not exhibit a steric effect. However, if one compares the actual values of k (Table 5) with those calculated from eq 16 using the measured ΔH_{HM} values (Table 4), one finds that the actual rate constants are always less than those predicted from eq 16. For the $Cp*Ir(CO)(PR_3)$ compounds, predicted *k* values (eq 16) and measured *k*'s are as follows: **12**, 1.22, 0.048; **13**, 34.9, 0.120; **14**, 43.4, 1.44; **15**, 43.4, 3.11; **16**, 115, 23.4. Thus, it appears that the rates of reaction (eq 2) of the $Cp*Ir(CO)(PR₃)$ complexes are slower than is expected from their basicities ($-\Delta H_{HM}$) because of steric inhibition by the methyl groups on the Cp* ligand.

Basicities (ΔH_{HP} **) of Phosphines.** Basicities (Table 4) of the tris(methoxyphenyl)phosphines increase in the order P(4- C_6H_4OMe ₃ (24.1 kcal/mol)¹⁸ < P(2- C_6H_4OMe)₃ (17; 25.5 kcal/ mol) \ll P[2,6-C₆H₃(OMe)₂]₃ (**18**; 33.8 kcal/mol) \le P[2,4,6- $C_6H_2(OMe)_{3}]_3$ (19; 36.7 kcal/mol). The $-\Delta H_{HP}$ value of $P[2,4,6-C_6H_2(OMe)_3]$ ₃ (19) could not be determined experimentally because this compound reacts with DCE under the conditions of the calorimetric titrations. However, it can be estimated using eq 19, which correlates¹⁸ ΔH_{HP} and p K_a values

$$
-\Delta H_{HP} = 1.82 pK_a(H_2O) + 16.3 \text{ (kcal/mol)} \quad (19)
$$

of 12 phosphines. With this equation, the reported pK_a (11.2)³⁶ of **19** can be used to estimate the $-\Delta H_{HP}$ value (36.7 kcal/ mol). Thus, **19** is much more basic than pyridine (29.3 kcal/ mol)³ but is not as basic as Et₃N (39.3).³ The strong donor ability of **19** is also evident in the low *ν*(CO) values for its $Ni(CO)₃(PR₃)$ complex.³⁷ The electron-donating ability of the methoxy groups also makes **18** (33.8 kcal/mol) as basic as PEt₃

⁽³⁶⁾ Yamashoji, Y.; Matsushita, T.; Wada, M.; Shono, T. *Chem. Lett.* **1988**, 43.

⁽³⁷⁾ Dunbar, K. R.; Haefner, S. C. *Polyhedron* **1994**, *13*, 727.

The basicities ($-\Delta H_{HP}$) of the tris(methylphenyl)phosphines increase in the order: $P(2-C_6H_4Me)_3$ (22.6 kcal/mol)¹⁸ < P(4- C_6H_4Me ₃ (23.2 kcal/mol)¹⁸ $\ll P(2,4,6-C_6H_2Me_3)$ ₃ (20; 29.4 kcal/mol). The pK_a for P(2,4,6-C₆H₂Me₃)₃ estimated with use of eq 19 is 7.20. The basicity $(-\Delta H_{HP})$ of **20** is intermediate

Effects of Ligands on Basicities *Inorganic Chemistry, Vol. 35, No. 5, 1996* **1331**

between those of PPhMe₂ (28.4 kcal/mol) and PMe₃ (31.6 kcal/ mol).3

Acknowledgment. We thank the National Science Foundation (Grants CHE-9103948 and CHE-9414242) for support of this work, Dr. J. H. Espenson for use of the Shimadzu UV-3101 PC spectrophotometer, and Johnson-Matthey, Inc., for the loan of IrCl₃·xH₂O.

Supporting Information Available: Derivations of eqs 8 and 9 (1 page). Ordering information is given on any current masthead page. IC951079P